Effects of Carbonization Parameters on the COD Reduction of Rhodamine B Dye Aqueous Solutions Using Elaeis guineensis Frond Fiber


Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia


The effects of various carbonization parameters on the COD reduction of Rhodamine B dye aqueous solutions using carbonized Elaeis guineensis frond fiber (EGFF) chars have been studied experimentally. The adsorbent with the particle size of <45 µm has been carbonized at temperature from 500-900 oC with carbonization duration of 1-3 h at a heating rate of 10-30 oC/min and nitrogen gas flow rate of 100-500 cm^3/min. Carbonization temperature, carbonization duration, heating rate and nitrogen gas flow rate were significantly affecting the carbonization process. Statistical analysis-response surface methodology (RSM)- face centered composite design (FCCD) was used to obtain the optimal carbonization conditions. The optimum condition for carbonization of EGFF was obtained at carbonization temperature of 899 oC, carbonization duration of 2.7 h, heating rate of 10 nitrogen flow rate of 243 cm3/min with 98.88 % of COD reduction of Rhodamine B.


1.   Li, W.,  K. Yang, J. Peng, L. Zhang, S. Guo and H. Xia, 2008. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products, 28: 190-198.

2.   Low, L.W., T.T. Teng, A. Ahmad, N. Morad and Y.S. Wong, 2011.  A  novel  pretreatment  method  of  lignocellulosic material  as  adsorbent  and  kinetic  study  of  dye  waste adsorption. Water Air and Soil Pollution, 218: 293-306.

3.   Su, C.X.H., T.T. Teng, A.F.M. Alkarkhi and L.W. Low, 2014. Imperata cylindrica (congrongrass) as an adsorbent for methylene blue dye removal: process optimization. Water Air and Soil Pollution, 225: Art. No. 1941.

4.   Kizito, S., S. Wu, W.K. Kirui, M. Lei, Q. Lu, H. Bah and R. Dong, 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of The Total Environment, 505: 102-112.

5.   Akrout, H., S. Jellali and L. Bousselmi, 2015. Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust. Comptes Rendus Chimie, 18: 110-120.

6.   Lee,  K.E.,  N.  Morad,  T.T.  Teng  and  B.T.  Poh,  2012. Preparation,  characterization  and  application of Mg(OH)2-PAM inorganic-organic  composite  polymer  in removing reactive dye. Iranica Journal of Energy and Environment,3: 37-42.

7.   Wan Rosli, W.D., K.N. Law, Z. Zainuddin and R. Asro, 2004. Effect of pulping variables on the characteristics of oil- palm frond fiber. Bioresource Technology, 93: 233-240.

8.   Malaysian    palm    oil    board    MPOB,    2014.    Monthly production of oil palm products summary for the month of December 2013. http://bepi.mpob.gov.my/index.php/statistics/producti on/118-production-2013/604-production-of-oil-palm- products-2013.html

9.   Low, L.W., T.T. Teng, A.F.M. Alkarkhi, N. Morad and B. Azahari, 2015. Carbonization of Elaeis guineensis frond fiber: effect of heating rate and nitrogen gas flow rate for adsorbent properties enhancement. Journal of Industrial and Engineering Chemistry 28: 37-44.

10. Lewis, I.C., 1982. Chemistry of carbonization. Carbon, 20: 519-529.

11. Talebi,  A.,  T.T.  Teng,  I.  Norli,  A.F.M.  Al-Karkhi,  2015. Facilitated liquid-liquid extraction and stripping of nickel and  cadmium  from  aqueous  solutions  by  ionic  liquid. Iranica Journal of Energy and Environment, 6: 188-194.

12. Heibati, B., S. Rodriguez-couto, A. Amrane, M. Rafatullah, A. Hawari and M.A. Al-Ghouti, 2014. Uptake of reactive black   5   by   pumice   and   walnut   activated   carbon: chemistry and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 20: 2939-2947.

13. Liu, Z., Z. Jiang, Z. Cai, B. Fei, Y. Yu and X. Liu, 2013. Effects of carbonization conditions on properties of bamboo pellets. Renewable Energy, 51: 1-6.

14. Montgomery,    D.C.,    2001.    Design    and    analysis    of experiments. 5th ed. John Wiley & Sons, New York.

15. Low, L.W., T.T. Teng. A.F.M. Alkarkhi, A. Ahmad and N. Morad, 2011. Optimization of the adsorption conditions for the decolorization and COD reduction of methylene blue aqueous solution using low-cost adsorbent. Water Air and Soil Pollution, 214: 185-195.

16. Elumalai, S., G. Muthuraman, M. Sathya, M. Soniya and T.T. Teng, 2014. Recovery of dye from textile effluents using phenol as an extractant. Journal of Industrial and Engineering Chemistry, 20: 1958-1964.

17. Amini, M., H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F. Ghorbani, A. Daneshi and M. Sharifzadeh, 2008. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Journal of Hazardous Materials, 154: 694-702.

18. Demiral,  I.  and  E.A.  Ayan,  2011.  Pyrolysis  of  grape bagasse:  Effect  of  pyrolysis  conditions on the  product yields   and   characterization   of   the   liquid   product. Bioresource Technology, 102: 3946-3951.

19. Manabe, T., M. Ohata, S. Yoshizawa, D. Najajima, S. Goto, K. Uchida  and  H.  Yajima,  2007.  Effect  of  carbonization temperature on the physicochemical structure of wood charcoal. Transactions of the Materials Research Society of Japan, 32: 1035-1038.