Photocatalytic Degradation of Anti-inflammatory Drug on Ti Doped BaBiO3 Nanocatalyst under Visible Light Irradiation

Document Type: Original Article


Ekpoma, Nigeria Department of Chemistry, Govt. P.G. College, Kota 324001, India


Nanosized perovskites BaBiO3 and BaBi4Ti4O15 were prepared using Pechini method. These structures were confirmed through thermogravimetric analysis (TGA), X-ray diffraction (XRD), UV-Vis diffusion reflection spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD patterns suggest that BaBiO3 is crystalized in the monoclinic structure while a member of aurivillius family, bismuth-based layer-structured BaBi4Ti4O15 is crystalized in tetragonal structure. The band gap is calculated from the UV-Vis DRS and is found to be 2.07 eV and 1.80 eV for BaBiO3 and BaBi4Ti4O15, respectively. The low band gap and the UV-Vis DRS of BaBi4Ti4O15 showed a clear improvement in reflectance under visible light irradiation, indicating a new Ti doped nano BaBiO3  catalyst. Furthermore, the prepared nanosized perovskites were applied in the degradation of ibuprofen, one kind of non- steroidal anti-inflammatory drug, via photocatalytic processes. It is shown that BaBi4Ti4O15 exhibited drastic enhancement on degradation of drug under visible light irradiation compared to BaBiO3. The drug was also more efficiently mineralized in the BaBi4Ti4O15 photocatalytic process. The degradation pathway can be described as an interconnected successive principal decaroxylation, hydroxylation and demethylation steps.


1.     Bahnemann,  W.,  M. Muneer  and  M.  Haque,  2007.  Titanium dioxide-mediated photocatalysed degradation of few selected organic  pollutants  in  aqueous  suspensions.  Catalysis  Today, 124(3): 133-148.

2.     Benhebal, H., M. Chaib, T. Salmon, J. Geens, A. Léonard, S.D. Lambert, M. Crine and B. Heinrichs, 2013. Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alexandria Engineering Journal, 52(3): 517-523.

3.     Khan, M.M., S.F. Adil and A.A. Mayouf, 2015. Metal oxide as photocatalysts. Journal of Saudi chemical society, 19(5): 462-464.

4.     Mills,   A.   and   R.   Davies,   1995.   Activation   energies   in semiconductor  photocatalysis  for  water  purification:  the  4-chlorophenol-TiO    2  O    2    photosystem.    Journal    of Photochemistry and Photobiology A: Chemistry, 85(1): 173-178.

5.     Wang, M., J. Ioccozia, L. Sun, C. Lin and Z. Lin, 2014. Inorganic- modified  semiconductor  TiO  2  nanotube  arrays  for photocatalysis.  Energy & Environmental Science, 7(7): 2182-2202.

6.     Akpan,  U.  and  B.  Hameed,  2009.  Parameters  affecting  the photocatalytic degradation of dyes using TiO 2-based photocatalysts: a review. Journal of hazardous materials, 170(2): 520-529.

7.     Gharagozlou, M. and R. Bayati, 2014. Photocatalytic activity and formation of oxygen vacancies in cation doped anatase TiO 2 nanoparticles. Ceramics International, 40(7): 10247-10253.

8.     Ma,  D.,  Y.Xin,  M.  Gao  and  J.  Wu,  2014.  Fabrication  and photocatalytic properties of cations and anions S-doped TiO2 nanofibers by electrospinning. Applied Catalysis B: Environmental, 147(1): 49-57.

9.     Li, G., L. Chen, N.M. Dimitrijevic and K.A. Gray, 2008. Visible light photocatalytic properties of anion-doped TiO 2 materials prepared from a molecular titanium precursor. Chemical Physics Letters, 451(1): 75-79.

10.   Likodimos, V., C. Han, M. Pelaez, A.G. Kontos, G. Liu, D. Zhu, S. Liao, A.A. de la Cruz, K. O’Shea and P.S. Dunlop, 2013. Anion-doped TiO2 nanocatalysts for water purification under visible  light.  Industrial  &  Engineering  Chemistry  Research, 52(39): 13957-13964.

11.   Li, Y., S. Yao, W. Wen, L. Xue and Y. Yan, 2010. Sol–gel combustion synthesis and visible-light-driven photocatalytic property   of   perovskite   LaNiO   3.   Journal   of   Alloys   and Compounds, 491(1): 560-564.

12.   Mahata,  P.,  T.  Aarthi,  G.  Madras  and  S.  Natarajan,  2007. Photocatalytic degradation of dyes and organics with nanosized GdCoO3. The Journal of Physical Chemistry C, 111(4): 1665-1674.

13.   Saha,  D.,  S.  Mahapatra,  T.G.  Row  and  G.  Madras,  2009.

Synthesis, Structure, and Photocatalytic Activity in Orthorhombic Perovskites LnVO3 and Ln1− x Ti x VO3 (Ln= Ce, Pr, and Nd). Industrial  &  Engineering  Chemistry  Research,  48(16):  7489-7497.

14.   Sulaeman,   U.,   S.   Yin   and   T.   Sato,   2011.   Visible   light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of SrTiO 3. Applied Catalysis B: Environmental, 102(1): 286-290.

15.   Anandan, S., Y. Ikuma and V. Murugesan, 2011. Highly active rare-earth-metal La-doped photocatalysts: fabrication, characterization, and their photocatalytic activity. International Journal                   of                   Photoenergy,                   2012.

16.   Tang, J., Z. Zou and J. Ye, 2007. Efficient photocatalysis on BaBiO3  driven  by  visible  light.  The  Journal  of  Physical Chemistry C, 111(34): 12779-12785.

17.   Bobić, J.D., M.M. Vijatović, T. Rojac and B.D. Stojanović, 2009. Characterization  and  properties  of  barium  bismuth  titanate. Processing and Application of Ceramics, 3(1-2): 9-12.

18.   Bobić,  J.,  M.V.  Petrović,  J.  Banys  and  B.  Stojanović,  2012. Electrical properties of niobium doped barium bismuth-titanate ceramics. Materials Research Bulletin, 47(8): 1874-1880.

19.   Rosyidah, A., D. Onggo, K. Khairurrijal and I. Ismunandar, 2010. FERROELECTRIC PROPERTIES OF BaBi 4 T i4 O 15 DOPED WITH Pb 2+, Al 3+, Ga 3+, In 3+, Ta 5+ AURIVILLIUS PHASES. Indonesian Journal of Chemistry, 9(3): 398-403.

20.   Nalini, G. and T. Guru Row, 2002. Structure determination at room temperature and phase transition studies above T c in ABi 4 Ti 4 O 15 (A= Ba, Sr or Pb). Bulletin of Materials Science, 25(4): 275-281.

21.   Kumar,   S.   and   K.   Varma,   2014.   Relaxor   behaviour   in BaBi4Ti4O15 ceramics fabricated using the powders obtained by mechanochemically assisted synthesis route. Bulletin of Materials Science, 37(6): 1233-1241.

22.   Razavia,  R.S.,  M.R.L.  Estarkib  and  M.F.  Khouzani,  2012. Synthesis and Charaterization of ZnO nanostructures by Polmeric Precursor Route. Acta Physica Polonica A, 121(1): 98-100.

23.   Santos, J., I. Aparicio and E. Alonso, 2007. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International, 33(4): 596-601.

24.   Quero-Pastor, M., M. Garrido-Perez, A. Acevedo and J. Quiroga, 2014. Ozonation of ibuprofen: a degradation and toxicity study. Science of the Total Environment, 466: 957-964.

25.   Kwon, M., S. Kim, Y. Yoon, Y. Jung, T.-M. Hwang, J. Lee and J.-W. Kang, 2015. Comparative evaluation of ibuprofen removal by UV/H 2 O 2 and UV/S 2 O 8 2− processes for wastewater treatment. Chemical Engineering Journal, 269: 379-390.

26.   Sunarso, J., S. Liu, Y. Lin and J.D. da Costa, 2009. Oxygen permeation performance of BaBiO 3− δ ceramic membranes. Journal of membrane science, 344(1): 281-287.

27.  LAZAREVIĆ, Z., N. ROMČEVIĆ and J. BOBIĆ, Study of ferroelectric BaBi4Ti4O15 obtained via mechanochemical synthesis.

28.   Sreenu, K., T. Bhargavi and K.L. Kabeta, 2014. Characterization and Phase Transitions of Bi Doped BaTiO 3 Ceramics Prepared through Chemical Route. Science, Technology and Arts Research Journal, 3(1): 39-43.

29.   Dharma, J., A. Pisal and C. Shelton, 2009. Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer. Application Note Shelton, CT: PerkinElmer.

30.   Lee, C., K.Y. Song and R. Sperline, 1996. Molecular Dyamics Simulation and Far Infrared Measurements of $ Ba_ {0.6} K_ {0.4} BiO_3$. Korean Journal of Materials Research, 6(6): 555-560.

31.   Vasconcelos,  D.C.L.,  E.H.M.  Nunes,  M.  Gasparon and  W.L. Vasconcelos, 2011. Infrared spectroscopy of titania sol-gel coatings on 316L stainless steel. Materials Sciences and Applications, 2(10): 1375.

32.   Zhao, X., J. Qu, H. Liu, Z. Qiang, R. Liu and C. Hu, 2009. Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi 2 MoO 6–boron-doped diamond hybrid electrode under visible light irradiation. Applied Catalysis B: Environmental, 91(1): 539-545.

33.   Mendez-Arriaga,   F.,   S.   Esplugas   and   J.   Gimenez,   2010.Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. water research, 44(2): 589-595.

34.   Li, X., Y. Wang, S. Yuan, Z. Li, B. Wang, J. Huang, S. Deng and G.   Yu,   2014.   Degradation   of   the   anti-inflammatory  drug ibuprofen by electro-peroxone process. Water research, 63: 81-93.