Removal of Heavy Metals from Wastewater Using Tribulus terrestris Herbal Plants Powder

Document Type: Original Article


Presidency College, Department of Chemistry, Chennai-05, India


The potential of economically cheaper Tribulus terrestris was assessed for iron adsorption from aqueous solutions. The effects of pH, Contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of iron were studied in batch process. Chemical treatment processes are ineffective and produce large quantity of sludge which requires further treatment. A simple and efficient treatment process for the removal of heavy metals is essentially required. Maximum iron removal was observed at pH 6 with adsorbent dosage of 0.6 g. The adsorbent data has been correlated with Langmuir and Freundlich adsorption models. FTIR and SEM before and after adsorption were recorded to explore the number and position of the functional groups available for iron binding onto the studied adsorbent and changes in surface morphology. The maximum percentage of iron removal was achieved at 87%. The results revealed that iron is considerably adsorbed on Tribulus terrestris and it could be economical method for the removal of iron from aqueous solutions. Pseudo second order model explains the iron kinetics more effectively.


1.     Vaez, M., A.Z. Moghaddam, N.M. Mahmoodi and S. Alijani, 2012. Decolorization and degradation of acid dye with immobilized titania nanoparticles. Process Safety and Environmental Protection, 90(1): 56-64.

2.     Muthuraman, G., T.T. Teng, C.P. Leh and I. Norli, 2009. Use of bulk liquid membrane for the removal of chromium (VI) from aqueous acidic solution with tri-n-butyl phosphate as a carrier. Desalination, 249(2): 884-890.

3.     Chu, L.-B., X.-H. Xing, A.-F. Yu, X.-L. Sun and B. Jurcik, 2008. Enhanced    treatment    of    practical    textile    wastewater    by microbubble   ozonation.   Process   Safety   and   Environmental Protection, 86(5): 389-393.

4.     Foo, K. and B. Hameed, 2012. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K 2 CO 3 activation. Bioresource technology, 104: 679-686.

5.     Lei, H., H. Li, Z. Li, Z. Li, K. Chen, X. Zhang and H. Wang, 2010. Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Safety and Environmental Protection, 88(6): 431-438.

6.     Ogunmodede, O.T., A. A. Ojo, E. Adewole and O. L. Adebayo, 2015. Adsorptive removal of anionic dye from aqueous solutions by mixture of Kaolin and Bentonite clay: Characteristics, isotherm, kinetic and thermodynamic studies. Iranica Journal of Energy and Environment 6(2): 147-153.

7.     Mubeena, K. and G. Muthuraman, Solvent extraction technique for removal and recovery of nickel from effluent by Tri methyl amine as a carrier.

8.     Alslaibi, T.,  I.  Abustan, M.  Ahmad and A.  Abu  Foul, 2013. Review: Comparison of agricultural by-products activated carbon production methods using surface area response. CJASR, 2: 18-27.

9.     Mahalakshmi,  K.,  S.K.  Suja,  K.  Yazhini,  S. Mathiya  and  G. Jayanthi Kalaivani 2014. A Novel Approach to Investigate Adsorption of Crystal Violet from Aqueous Solutions Using Peels of   Annona   squamosal.   Iranica   Journal   of   Energy   and Environment, 5(2): 113-123.

10.   Balaji, R., S. Sasikala, G.Muthuraman, 2014. Removal of Iron from drinking / ground water by using agricultural Waste as Natural adsorbents   International Journal of Engineering and Innovative Technology, 3: 43-46.

11.   Ghorbani, M., H. Eisazadeh and A.A. Ghoreyshi. , 2012. Removal of Zinc Ions from Aqueous Solution Using Polyaniline Nanocomposite Coated on Rice Husk. Iranica Journal of Energy & Environment, 3(1): 83-88.

12.   Kapur, M. and M.K. Mondal, 2013. Mass transfer and related phenomena for Cr (VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chemical Engineering Journal, 218: 138-146.

13.   Kumar,  P.,  S.  Sudha,  S.  Chand  and  V.C.  Srivastava,  2010. Phosphate removal from aqueous solution using coir-pith activated carbon. Separation Science and Technology, 45(10): 1463-1470.

14.   Ali, S., 2012. Comparison of Pb Removal Efficiency by Zero Valent Iron Nanoparticles and Ni/Fe Bimetallic Nanoparticles. Iranica Journal of Energy & Environment., 3(1): 44-51.

15.   Muthuraman, G. and S. Sasikala, 2014. Removal of turbidity from drinking water using natural coagulants. Journal of Industrial and Engineering Chemistry, 20(4): 1727-1731.

16.   Muthuraman, G. and S. Sasikala, 2013. Proteins from natural coagulants used as potential application of turbidity removal from drinking water. IJEIT, 3: 283-287.

17.   Namasivayam,  C.,  D.  Sangeetha  and  R.  Gunasekaran,  2007. Removal of anions, heavy metals, organics and dyes from water by adsorption onto a new activated carbon from Jatropha husk, an agro-industrial solid waste. Process Safety and Environmental Protection, 85(2): 181-184.

18.   Rao, M., A. Parwate and A. Bhole, 2002. Removal of Cr 6+ and Ni 2+ from aqueous solution using bagasse and fly ash. Waste management, 22(7): 821-830.

19.   Rao, M.M.,  D.K.  Reddy,  P.  Venkateswarlu  and  K.  Seshaiah, 2009.  Removal  of  mercury  from  aqueous  solutions  using activated carbon  prepared  from  agricultural by-product/waste. Journal of environmental management, 90(1): 634-643.

20.   Samadi, M., A. Rahman, M. Zarrabi, E. Shahabi and F. Sameei, 2009. Adsorption of chromium (VI) from aqueous solution by sugar beet bagasse‐based activated charcoal. Environmental technology, 30(10): 1023-1029.

21.   Gao,  B.-Y.,  Q.-Y.  Yue  and  Y.  Wang,  2007.  Coagulation performance of polyaluminum silicate chloride (PASiC) for water and    wastewater    treatment.    Separation    and    Purification Technology, 56(2): 225-230.

22.   Mohan, S.V., N.C. Rao, K.K. Prasad and J. Karthikeyan, 2002. Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Management, 22(6): 575-582.

23.   Sasikala, S. and G. Muthuraman, Kinetic Studies for Chromium (VI) removal by using Strychnos potatorum Seed powder And Fly ash.

24.   Wołowicz, A. and Z. Hubicki, 2012. The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis- picolylamine functional groups in the removal of selected metal ions from acidic solutions. Chemical Engineering Journal, 197: 493-508.

25.   Bharathi., K.S.a.R.S.P., 2012. Equilibrium, Thermodynamic and Kinetic Studies on Adsorption of a Basic Dye by Citrullus Lanatus Rind. Iranica Journal of Energy and Environment., 3(1): 23-34.