Harnessing Alternative Technology for the Sustainability of Biodiesel Production

Document Type: Original Article


1 Chemical Engineering Department, Federal University of Technology, P.M.B. 65 Gidan Kwano Minna, Niger State, Nigeria

2 Chemical and Petroleum Engineering, Niger Delta University Wilberforce Island, Bayelsa State, Nigeria

3 Shell Petroleum Development Company of Nigeria (SPDC) Ltd. Shell Industrial Area, umuobiakani, Port Harcourt, Rivers State, Nigeria

4 School of Chemical Engineering and Advanced Materials, Newcastle University,NE1 7RU, UK


Biofuel, a renewable energy is mainly produced by transesterification of fatty acids either in presence of enzyme or catalysts. The transesterification relies on the use of either strong base or strong acid homogeneous catalysts for effective performance; but, homogeneous catalysts are associated with a variety of technical hurdles that limit their use for biodiesel production. Although there have been recent developments in heterogeneous catalysts for biodiesel production via transesterification; the separation of methyl ester (FAMEs) from crude glycerol and alcohol recovery are still major hindrances. A possible alternative could be the use of solid acid catalysts in thermocatalytic cracking of triglycerides. Sulphated zirconia catalyst was evaluated for thermocatalytic cracking of triglycerides at a relatively low temperature (270oC) and atmospheric pressure. The catalyst was found to be active toward cracking vegetable oils to methyl esters. The catalyst at this temperature exhibited different selectivity towards formation of saturated and unsaturated methyl esters. The catalyst yield of methyl esters under these conditions was 58% while 80% of the product being unsaturated. This opens up the possibility of controlling the degree of saturation of the methyl ester product by catalyst choice, to produce more or less saturated fuels for different markets. The range of products from gases to middle distillates and the unique selectivity for saturated and unsaturated esters may be a significant process advantage  of  this form  of  catalytic  cracking.  An  important  long  chain  unsaturated  alcohol  (1- Heptatriacotanol) was also identified. The unsaturated alcohol is known as an industrial chemical.


1.  Ravindran, M., 2000. The Indian 1 MW Floating OTEC Plant— An Overview. IOA Newsletter, 11(2). 

2.  Idem,  R.O.,  S.P.  Katikaneni  and  N.N.  Bakhshi, 1996.  Thermal cracking  of  canola  oil:  reaction  products  in  the  presence  and absence of steam. Energy & Fuels, 10(6): 1150-1162. 

3.  Charusiri,  W.  and  T.  Vitidsant,  2005.  Kinetic  study  of  used vegetable oil to liquid fuels over sulfated zirconia. Energy & fuels, 19(5): 1783-1789. 

4.  Maher,  K.  and  D.  Bressler,  2007.  Pyrolysis  of  triglyceride materials  for  the  production  of  renewable  fuels  and  chemicals. Bioresource technology, 98(12): 2351-2368.

5.  Taufiqurrahmi,  N.  and  S.  Bhatia,  2011.  Catalytic  cracking  of edible and non-edible oils for the production of biofuels. Energy & Environmental Science, 4(4): 1087-1112. 

6.  Huber, G.W. and A. Corma, 2007. Synergies between Bio-and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38): 7184-7201. 

7.  Ooi,  Y.-S.,  R.  Zakaria,  A.R.  Mohamed  and  S.  Bhatia,  2004. Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel. Biomass and Bioenergy, 27(5): 477-484. 

8.  Kirszensztejn,  P., R.  Przekop,  A.  Tolińska and E.  Maćkowska, 2009. Pyrolytic and catalytic conversion of rape oil into aromatic and  aliphatic  fractions  in  a  fixed  bed  reactor  on  Al2O3  and Al2O3/B2O3 catalysts. Chemical Papers, 63(2): 226-232. 

9.  Rattanaphra,  D.,  A.  Harvey  and  P.  Srinophakun,  2010. Simultaneous conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia. Topics in Catalysis, 53(11- 12): 773-782. 

10.  Jiang, S., F. Zhang and L. Pan, 2010. Sodium phosphate as a solid catalyst for biodiesel preparation. Brazilian Journal of Chemical Engineering, 27(1): 137-144. 

11.  Dupont, J., P.A. Suarez, M.R. Meneghetti and S.M. Meneghetti, 2009.  Catalytic  production  of  biodiesel  and  diesel-like hydrocarbons  from  triglycerides.  Energy  &  Environmental Science, 2(12): 1258-1265. 

12.  Mäki-Arvela,  P.,  I.  Kubickova,  M.  Snåre,  K.  Eränen  and  D.Y. Murzin,  2007.  Catalytic  deoxygenation  of  fatty  acids  and  their derivatives. Energy & Fuels, 21(1): 30-41. 

13.  Eterigho,  E.J.,  T.S.  Farrow  and  C.P.  Ogbuka,  2014.  Effect  of Modification on Conventional Preparation Method for Sulphated Zirconia  on  the  Production  of  Fatty  Acid  Methyl  Ester.  Asian Journal of Engineering and Technology, 2(3). 

14.  Berrones, R., K. Camas, Y. Pérez, E. Ramírez, A. Pérez, D. Eapen and P. Sebastian, 2014. Synthesis and Performance of Sulfated Zirconia Catalyst in Esterification of Oleic Acid. Journal of New Materials for Electrochemical Systems, 17(2): 99-104. 

SchoolofChemicalEngineering and Advanced Materials, NewcastleUniversity,NE1 7RU, U