پایان و چرخه آزمیز در واکنش هیدرولیز آزمیز مواد سلولزی طبیعی

افشته راز: کامپ موفر تازد

د. دانشگاه صنعتی توشیرویی تبریز
د. دانشکده مهندسی شیمی
تاریخ دریافت: 12/11/87

چکیده
در این مطالعه یک راه عملی ساده برای بیانلایه آزمیزهای آزاد در محیط هیدرولیز مواد سلولزی طبیعی و بررسی شده است. آزمایش‌های انجام شده روی سیسوس برای نشان دادن که می‌توان یا افزودن ماده اولیه تازه مقداری از آزمیزهای آزاد موجود در محیط واکنش را دوباره دفع ساخت. می‌توان برای مقایسه نتایج تجربی با تهیه واکنش، از مدل‌های کوچک شونده استفاده یافته شده یک همگونی خوبی میان نتایج تجربی و پیشینی نظری وجود داشته است.

واژه‌های کلیدی: بیانلایه، هیدرولیز آزمیزی، سلولز

1- مقدمه
یکی از راه‌های تبدیل سولز به گلوکز هیدرولیز آزمیزی آن می‌یابد. برای کسب درصد تبدیل‌های بالا به مقدار آزمیز بالاتری نیاز است که این موضوع افزایش هزینه‌های تولید را به همراه دارد. بازار این فراوری، استخراج و استفاده بهینه از آزمیز عوامل تعیین کننده این آزمیز است و از انجایی که مواد اولیه آن واکنش بی‌ارزش و کم هزینه هستند، استفاده بهتر از آزمیز به اقتصاد فرآیند کمک شایانی خواهد کرد.

1- نتایج
به منطقه بی‌سیاری می‌کوشند تا از آن روش آماده و طراحی‌های کارآمدتری و پیچیده‌تری از هزینه‌های جاری و ثابت فرآیند تجزیه آزمیز بهبود و از آن را اقتصادی سازند. از آن‌ها که در این فرآیند همیشه مقداری آزمیز در محیط عمل با استفاده بالی ماره، روش‌های بیانلایه و استفاده مجدد از

Email : movagharnejad@yahoo.com
۵. کاشش فعالیت آنزیمی بر اثر مانع مواد تولیدی در جریان واکنش.
۶. توزیع تصادفی فسته‌های سلول‌زی و غیر سلول‌زی بر روی ذرات.
۷. یک کوکه شدن جرم سلول‌زی درون ذرات در طول فرآیند واکنش و بدون تغییر باقی مانند مواد غیر سلول‌زی.

قابل ذکر است که به دلیل کن رنگ مرحله هیدرولیز کلی مقایسه‌های انتقال جرمی ناجی فرض شده‌می‌شود، این موضوع تا زمانی ادامه دارد که هیچ گونه دیگری وجود نداشته و همکاری و توسعه مکانیکی سلول و کمیاکس سلول‌زی آنزیمی محصول که می‌شود. در مرحله ذوب واکنش، به علت کوکه شدن قطعه واکنشگری، بعضی از آنزیم‌های جدی شده بر روی هر مایع اولیه، آزاد شده و به محیط واکنش بر می‌گردد و نهایتاً از آن قطعه واکنشگری بطور کامل هیدرولیز شده است. واکنش پایان می‌یابد. شکل ۱ این پدیده را نشان می‌دهد:

۱. جذب سطحی قسمتی از آنزیم‌های موجود در محلول توسط سلول و صورت تغییر هیچ گونه واکنش قابل ملاحظه‌ای در جریان این جذب نبود.
۲. انتقال شدن بعضی از مکان‌های موجود بر سطح ذرات.
۳. تعداد مکان‌های موجود بر سطح ذرات سلول‌زی قابل جذب توسط آنزیم‌های سلول‌زی مناسب با سطح خارجی ذرات سلول‌زی است [۱].
۴. انتقال آنزیم‌ها از توده سیال به سطح خارجی سلول در مقایسه با واکنش شیمیایی سریع است.
بنیاد شده است، را نشان می‌دهد در قسمت (b)، یکان\(\text{بایان مرحله اول واکنش‌دهی می‌شود. تا این موقع سطح خارجی}
\(\text{می‌تواند کامل توسط آنزیم‌های فعال با مواد غیر سولولی بر}
\(\text{شده است و می‌تواند دیگری وجود نمی‌باشد و در قسمت}
\(\text{کمیل‌کس‌های سولولی – آنزیم – محصول با مواد غیر سولولی بر}
\(\text{شده است، مشاهده می‌شود.}

کل سطح خارجی آنزیم‌زدات:
\[
S_{T,\text{eff}} = V_{\text{reactor}} C_{\text{eff}} \left(\frac{S}{V}\right)_{\text{eff}} \theta_a
\]
\(\text{که در آن:}
\[
C_{\text{eff}} = C_{s,\text{eff}}
\]
\[
V_{\text{reactor}} = \frac{\exists}{\rho_s}
\]
\(\text{و}
\[
\rho_s = \rho
\]
\(\text{تعادل کل میکل‌کس‌ها فعال بر روی سطح خارجی قطعه}
\(\text{کوب‌چک شونده برای است با:}
\[
K_v V_{\text{reactor}} C_{\text{eff}} \left(\frac{S}{V}\right)_{\text{eff}} \theta_a
\]
\(\text{که در آن:}
\[
C_{\text{eff}} = \theta_a
\]
\(\text{می‌تواند کاملاً مانند فعال به تعادل کل میکل‌کس‌ها}
\(\text{موجود کاملاً مانند تئاسب می‌باشد.}
\(\text{فرض می‌شود که می‌تواند به‌طور آنرزیمی مواد سولولی}
\(\text{متناوب با تعادل میکل‌کس‌ها فعال تبادل شده بر روی}
\(\text{سطح خارجی قطعه واکنش‌گر باشد، لذا:}
\[
-\frac{dN_{s,\text{eff}}}{dt} = \frac{K_v K_e}{\rho_s} V_{\text{reactor}} C_{\text{eff}} \left(\frac{S}{V}\right)_{\text{eff}} \theta_a
\]
\(\text{که در آن:}
\[
N_{s,\text{eff}} = \theta_a
\]
\(\text{و}
\[
\rho_s = \rho
\]
\(\text{می‌باشد.}
\(\text{میزان میکل‌کس سولولی در قسمت واکنش نکته برای است با:}
\[
K_v V_{\text{reactor}} C_{\text{eff}} \left(\frac{S}{V}\right)_{\text{eff}} \theta_a
\]
برای مرحله دوم خواهیم داشت:

\[
\frac{K_0}{3} (t - t_i) = \left[\frac{3}{2} \right] \left(\frac{-1}{3} [Z_i^3 - Z^3] + \frac{\alpha}{2} [Z_i^2 - Z^2] - \frac{\alpha^2}{2} (Z_i - Z) \right] + (1 + \alpha K_0' (\alpha^2 - \gamma)) I_1 + \alpha K_0' (1 + \alpha \gamma) I_0
\]

که در آن

\[
Z = \left(\frac{C_{\text{eff}}}{C_0} \right)^{\theta_0 - \gamma} (\frac{1}{2})
\]

مقادیر پیشنهادی شرایط مسئله فرق خواهند کرد در صورتی که

\[
\alpha \times \frac{3}{4} (1 + \alpha \gamma) = Z
\]

در صورتی که

\[
I_0 = \frac{1}{3X_i^2 + 2\alpha X_i}
\]

\[
\ln \left(\frac{Z_i - X_1}{Z - X_1} \right) + \frac{1}{2} \ln \left(\frac{(Z_i - A)^2 + B^2}{(Z - A)^2 + B^2} \right) + \frac{A - X_s}{B} \times \left[\arctan \left(\frac{Z_i - A}{B} \right) - \arctan \left(\frac{Z - A}{B} \right) \right]
\]

\[
I_1 = \frac{1}{3X_s^2 + 2\alpha X_s}
\]

\[
X_s \ln \left(\frac{Z_i - X_s}{Z - X_s} \right) + \frac{1}{2} X_s \ln \left(\frac{(Z_i - A)^2 + B^2}{(Z - A)^2 + B^2} \right) + \left(\frac{A^2 - AX_s + B^2}{B} \right) \times \left[\arctan \left(\frac{Z_i - A}{B} \right) - \arctan \left(\frac{Z - A}{B} \right) \right]
\]
3- شرح آزمایش‌ها
برای کلیه آزمایش‌ها از سویس برنج به علیه ماده اولیه استفاده شد. استفاده از این ماده به عنوان سویس برنج در مقایض با دستورالعمل به همچنین با انجام آزمایش‌های تابی شده است که این ماده با هدایت خوبی در تولید قندپذیر محلول داشته است. آزمایش‌های مورد استفاده عبارت Novozyme 188 و Celluclast CC/85 بودند از رابطه دو ماده.

فعالیت آنزیمی مقدار 77 واحد FPU.

نمونه‌های محلول در طول شش کامالاً در دمای 90℃ خشک می‌شود. مقدار مشخصی سلزس با تاپی برقراری PH=5 و دماهای 45 و 37 درجه سانتی‌گراد در فاصله‌ای نسبی می‌باشد. کاملی معکوس داشته می‌شود، در زمان‌های معین 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

در حالی که به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگرمی به مقدار A cm مناسب ی شکل می‌گیرد.

به دقت 15 دقیقه در فاصله‌ای میان 0.5 تا 0.5 کیلوگر
دده شده است. پس از یک دور هیدرولیز به مدت 8 ساعت، مواد اولیه نیمه هیدرولیز شده، جدی شده و سبوس تازه برای جذب انرژی‌های آزاد اضافه می‌گردد. سپس عمل هیدرولیز به مدت 8 ساعت دیگر ادامه می‌یابد.

شکل 2- نحوه کلی روشهزایان آنزیم و انجم آزمایش‌ها

5- نتایج

پس از انجم آزمایش‌ها، برای تعیین میزان دقت و کارایی عمل، نتایج تجربی را با مقدار تئوری حاصل از مدل می‌برد بر قطعه کوکچ شونده مقایسه می‌کنیم. این تابع برای دو چرخه اول و دوم در شکل‌های 4 و 3 در دو غلظت ماده اولیه (سوس بینی) مقاوت‌های 130 و 150 گرم در لیر و نسبت‌های انرژی مختلف نشان داده شده که در تمام میزان خطا میانگین سبب می‌شود آزمایش کمتر از 5 درصد بوده است.

همچنین انجم این آزمایش‌ها نشان داد که چرخه دوره و جذب آنزیم‌های آزاد موجود در محلول توسط مواد سلولاری تازه اثر قابل ملاحظه‌ای بر نیروی پیشرفت هیدرولیز آنزیمی داشته است.

6- تحقیق گیری

از روی این آزمایش‌ها و همکاران خویی که میان مدل نظری و نتایج آزمایشی بستگی آمده است، می‌توان تابع کلی زیر را مطرح نمود:

1.

\[\text{مدل قطعه کوکچ شونده توانایی شبیه‌سازی و توصیف } \]

ریاضی به‌این بازه قرار دارد مواد سلولاری را دارا می‌باشد.

2.

\[\text{چرخه دوره آنزیم بیشتر مواد سلولاری تازه به روشنی که } \]

در این تحقیقات مورد استفاده قرار گرفت. چرا چرخه دوم به

マجله مهندسی اثری و محیط زیست، سال 1، شماره 1، 1388

