Document Type : Original Article

Authors

1 Energy and Environment Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

2 School of Mechanical Engineering, Pusan National University, Busan 609-735, Republic of Korea

Abstract

Providing sustainable energy to achieve favorable economic development has attracted the attention of many governments in recent years. Renewable energies, especially wind energy, have gained considerable media attention recently due to challenges with the use of fossil fuels, including difficulty in accessing and devastating environmental impacts. Extensive efforts have been made in Asia to benefit wind energy regionally, all of which have made Asia a leader in this field. There are a few simulation results in this area, given the importance and need to compile infrastructural strategies and programs that require a thorough understanding of the current state of wind energy usage and determining its potential in different regions. Therefore, this study reports for the first time on surveys conducted on average of 20-year wind speed data collected from 2892 stations in 49 Asian countries and wind speed and power density maps obtained using Geographic Information System (GIS) software and the Boolean method. Besides assessing the problems and issues of energy consumption in countries with high potential wind energy in Asia, in this paper, we try to explore the benefits and requirements of using wind energy in these countries as well as the possibility of maximally using wind energy. According to the results, east and north of Russia, as well as west and southwest Asia are optimal regions for establishing large-scale wind plants; there is no significant potential for the use of wind energy in other regions, especially in the majority of China, ASEAN countries, and their neighboring countries.

Keywords

Main Subjects

  1. Esameili Shayan M, Najafi G, Esmaeili Shayan S. Smart micro-grid electrical energy management: techno-economic assessment. Energy Engineering and Management. 2023; 13(1): 90-101. Doi: 10.22052/jeem.2023.113605
  2. Shayan ME, Najafi G, Ghobadian B, Gorjian S, Mazlan M. A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control. International Journal of Energy and Environmental Engineering. 2023; 14(1): 35-46. Doi: 10.1007/s40095-022-00503-7
  3. Esmaeili Shayan M, Najafi G, Esmaeili Shayan S. Energy Management Model for a Standalone Hybrid Microgrid Using a Dynamic Decision-Making Algorithm. Amirkabir Journal of Mechanical Engineering. 2023; 55(1): 3-20. Doi: 10.22060/mej.2023.20755.7346
  4. Esmaeili Shayan M, Esmaeili Shayan S, Nazari A. Possibility of supplying energy to border villages by solar energy sources. Energy Equipment and Systems. 2021; 9(3). Doi: 10.22059/ees.2021.246079
  5. Esmaeili Shayan M, Najafi G, Ghobadian B, Gorjian S, Mazlan M, Samami M, Shabanzadeh A. Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis. Sustainability. 2022; 14(6): 3566. Doi: 10.3390/su14063566
  6. REN21. Renewables 2022 Global Status Report. REN21; 2022. https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf [Accessed: 19 December 2023]
  7. Shayan ME, Najafi G, Ghobadian B, Gorjian S, Mamat R, Ghazali MF. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renewable Energy. 2022; 201: 179-89. Doi: 10.1016/j.renene.2022.11.006
  8. Shayan ME, Najafi G, Lorenzini G. Optimization of a dual fuel engine based on multi-criteria decision-making methods. Thermal Science and Engineering Progress. 2023; 44: 102055. Doi: 10.1016/j.tsep.2023.102055
  9. Serrano‐González J, Lacal‐Arántegui R. Technological evolution of onshore wind turbines—a market‐based analysis. Wind Energy. 2016; 19(12): 2171-87. Doi: 10.1002/we.1974
  10. Williams M. Don't Discount the Power of Wind: Herox; 2020 Available from: https://www.herox.com/crowdsourcing-news/281-wind-power-by-2050
  11. Bandoc G, Prăvălie R, Patriche C, Degeratu M. Spatial assessment of wind power potential at global scale. A geographical approach. Journal of Cleaner Production. 2018; 200: 1065-86. Doi: 10.1016/j.jclepro.2018.07.288
  12. Mentis D, Hermann S, Howells M, Welsch M, Siyal SH. Assessing the technical wind energy potential in Africa a GIS-based approach. Renewable Energy. 2015; 83: 110-25. Doi: 10.1016/j.renene.2015.03.072
  13. Richard C. Africa due for 30GW growth by 2027: Wind Power Monthly; 2018. Available from: https://www.windpowermonthly.com/article/1489000/africa-due-30gw-growth-2027.
  14. Tiyou T. The five biggest wind energy markets in Africa. Renewable Energy Focus. 2016; 17(6): 218-20. Doi: 10.1016/j.ref.2016.10.005
  15. Wind energy in Europe in 2018- Trends and statistics 2019 February 2019. Available from: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2018.pdf [Accessed: 22 July 2019]
  16. Xenophon A, Hill D. Open grid model of Australia’s National Electricity Market allowing backtesting against historic data. Scientific Data. 2018; 5(1): 180203. Doi: 10.1038/sdata.2018.203
  17. Wind energy, Australian renewable energy agency (ARENA) 2018. Available from: https://arena.gov.au/renewable-energy/wind.
  18. Wind power in the Australian Energy Market, Aneroid Energy Available from: https://anero.id/energy/wind-energy
  19. North America, International Renewable Energy Agency (IRENA): International Renewable Energy Agency (IRENA). Available from: https://www.irena.org/northamerica
  20. South America Renewables: South America Energy Series (SAES19); Available from: http://energyseries-southamerica.com/south-america-renewables
  21. Rufin C. Wind Energy in Latin America Realizing the Potential: Revista. Available from: https://revista.drclas.harvard.edu/book/wind-energy-latin-america.
  22. Global Wind Report, Global Wind Energy Council. 2018. Available from: https://gwec.net/global-wind-report-2018
  23. Global Wind Report, Annual Market Update 2015. Global Wind Energy Council (GWEC); 2015. https://www.gwec.net/wp-content/uploads/vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf [Accessed: 11 April 2024]
  24. deCastro M, Salvador S, Gómez-Gesteira M, Costoya X, Carvalho D, Sanz-Larruga FJ, Gimeno L. Europe, China and the United States: Three different approaches to the development of offshore wind energy. Renewable and Sustainable Energy Reviews. 2019; 109: 55-70. Doi: 10.1016/j.rser.2019.04.025
  25. Liu F, Sun F, Liu W, Wang T, Wang H, Wang X, Lim WH. On wind speed pattern and energy potential in China. Applied Energy. 2019; 236: 867-76. Doi: 10.1016/j.apenergy.2018.12.056
  26. Shen SV, Cain BE, Hui I. Public receptivity in China towards wind energy generators: A survey experimental approach. Energy Policy. 2019; 129: 619-27. Doi: 10.1016/j.enpol.2019.02.055
  27. Unwin J, Farmer M. The top 10 countries in the world by wind energy capacity 2019. Available from: https://www.power-technology.com/features/wind-energy-by-country
  28. Pishkar I, Jahangirib M, Farsanib RY, Farsanic AK. Effect of wind speed on the drag force and wall shear stress of domes in historical mosques of Iran: a case study. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering. 2023; 15(2): 63-77. Available from: https://jsme.khsh.iau.ir/article_704453.html
  29. Hamda Soulouknga M, Pishkar I, Kaoga Kidmo D, Jahangiri M. Estimation and mapping of the global component of solar radiation and wind power density over Chad. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering. 2023; 15(1): 39-49. Available from: https://jsme.khsh.iau.ir/article_701343.html
  30. Ganjei N, Zishan F, Alayi R, Samadi H, Jahangiri M, Kumar R, Mohammadian A. Designing and Sensitivity Analysis of an Off-Grid Hybrid Wind-Solar Power Plant with Diesel Generator and Battery Backup for the Rural Area in Iran. Journal of Engineering. 2022; 2022: 1-14. Doi: 10.1155/2022/4966761
  31. Kaldellis JK, Kapsali M. Shifting towards offshore wind energy—Recent activity and future development. Energy Policy. 2013; 53: 136-48. Doi: 10.1016/j.enpol.2012.10.032
  32. Kaldellis JK, Kapsali M, Katsanou E. Renewable energy applications in Greece—What is the public attitude? Energy Policy. 2012; 42: 37-48. Doi: 10.1016/j.enpol.2011.11.017
  33. Vahdatpour S, Behzadfar S, Siampour L, Veisi E, Jahangiri M. Evaluation of Off-grid Hybrid Renewable Systems in the Four Climate Regions of Iran. Journal of Renewable Energy and Environment. 2017; 4(1). Doi: 10.30501/jree.2017.70107
  34. Mostafaeipour A, Sadeghi S, Jahangiri M, Nematollahi O, Rezaeian Sabbagh A. Investigation of accurate location planning for wind farm establishment: a case study. Journal of Engineering, Design and Technology. 2020; 18(4): 821-45. Doi: 10.1108/JEDT-08-2019-0208
  35. Serri L, Lembo E, Airoldi D, Gelli C, Beccarello M. Wind energy plants repowering potential in Italy: technical-economic assessment. Renewable Energy. 2018; 115: 382-90. Doi: 10.1016/j.renene.2017.08.031
  36. Janke JR. Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy. 2010; 35(10): 2228-34. Doi: 10.1016/j.renene.2010.03.014
  37. Krewitt W, Nitsch J. The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: a case study for two regions in Germany. Renewable Energy. 2003; 28(10): 1645-55. Doi: 10.1016/S0960-1481(03)00008-9
  38. Nguyen KQ. Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy. 2007; 35(2): 1405-13. Doi: 10.1016/j.enpol.2006.04.011
  39. Siyal SH, Mörtberg U, Mentis D, Welsch M, Babelon I, Howells M. Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach. Energy. 2015; 83: 447-61. Doi: 10.1016/j.energy.2015.02.044
  40. Sliz-Szkliniarz B, Vogt J. GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko–Pomorskie Voivodeship. Renewable and Sustainable Energy Reviews. 2011; 15(3): 1696-707. Doi: 10.1016/j.rser.2010.11.045
  41. Van Haaren R, Fthenakis V. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews. 2011; 15(7): 3332-40. Doi: 10.1016/j.rser.2011.04.010
  42. Siampour L, Vahdatpour S, Jahangiri M, Mostafaeipour A, Goli A, Shamsabadi AA, Atabani A. Techno-enviro assessment and ranking of Turkey for use of home-scale solar water heaters. Sustainable Energy Technologies and Assessments. 2021; 43: 100948. Doi: 10.1016/j.seta.2020.100948
  43. Manwell JF, McGowan JG, Rogers AL. Wind Energy Explained: Theory, Design and Application. 1st edition: Wiley; 2009.
  44. Anwarzai MA, Nagasaka K. Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renewable and Sustainable Energy Reviews. 2017; 71: 150-60. Doi: 10.1016/j.rser.2016.12.048
  45. Sunak Y, Höfer T, Siddique H, Madlener R, De Doncker RW. A GIS-based decision support system for the optimal siting of wind farm projects: Universitätsbibliothek der RWTH Aachen Aachen, Germany; 2015.
  46. Baban SMJ, Parry T. Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy. 2001; 24(1): 59-71. Doi: 10.1016/S0960-1481(00)00169-5
  47. United State Environmental Protection Agency (USEPA), Screening Sites for Wind Energy Potential 2023. Available from: https://nepis.epa.gov
  48. Watson JJW, Hudson MD. Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning. 2015; 138: 20-31. Doi: 10.1016/j.landurbplan.2015.02.001
  49. Ratner SV, Nizhegorodtsev RM. Analysis of renewable energy projects’ implementation in Russia. Thermal Engineering. 2017; 64(6): 429-36. Doi: 10.1134/S0040601517060052
  50. Saneev B. Regional priorities of the Eastern energy policy of Russia. E3S Web of Conferences. 2019; 77: 01006. Doi: 10.1051/e3sconf/20197701006
  51. Ermolenko BV, Ermolenko GV, Fetisova YA, Proskuryakova LN. Wind and solar PV technical potentials: Measurement methodology and assessments for Russia. Energy. 2017; 137: 1001-12.Doi: 10.1016/j.energy.2017.02.050
  52. Lanshina TA, “Skip” Laitner JA, Potashnikov VY, Barinova VA. The slow expansion of renewable energy in Russia: Competitiveness and regulation issues. Energy Policy. 2018; 120: 600-9. Doi: 10.1016/j.enpol.2018.05.052
  53. Cherepovitsyn A, Tcvetkov P, editors. Overview of the prospects for developing a renewable energy in Russia. 2017 International Conference on Green Energy and Applications (ICGEA); 2017 3/2017, Singapore: IEEE.
  54. Ratner S. Learning rates in wind energy: cross-country analysis and policy applications for Russia. International Journal of Energy Economics and Policy. 2018; 8(3): 258-66. Available from: https://www.zbw.eu/econis-archiv/bitstream/11159/2121/1/1028135076.pdf
  55. Quitoras MRD, Abundo MLS, Danao LAM. A techno-economic assessment of wave energy resources in the Philippines. Renewable and Sustainable Energy Reviews. 2018; 88: 68-81. Doi: 10.1016/j.rser.2018.02.016
  56. Marquardt J. The politics of energy and development: Aid diversification in the Philippines. Energy Research & Social Science. 2015; 10: 259-72. Doi: 10.1016/j.erss.2015.07.013
  57. Roxas F, Santiago A. Alternative framework for renewable energy planning in the Philippines. Renewable and Sustainable Energy Reviews. 2016; 59: 1396-404. Doi: 10.1016/j.rser.2016.01.084
  58. Mukherjee I, Sovacool BK. Sustainability principles of the Asian Development Bank's (ADB's) energy policy: An opportunity for greater future synergies. Renewable Energy. 2012; 48: 173-82. Doi: 10.1016/j.renene.2012.04.053
  59. DOE. AidData BETA, Open Data for International Development Washington, DC., 2014. Available from: http://aiddata.org
  60. Chuang M-T, Chang S-Y, Hsiao T-C, Lu Y-R, Yang T-Y. Analyzing major renewable energy sources and power stability in Taiwan by 2030. Energy Policy. 2019; 125: 293-306. Doi: 10.1016/j.enpol.2018.10.036
  61. Liu S-Y, Ho Y-F. Wind energy applications for Taiwan buildings: What are the challenges and strategies for small wind energy systems exploitation? Renewable and Sustainable Energy Reviews. 2016; 59: 39-55. Doi: 10.1016/j.rser.2015.12.336
  62. Lee H-C, Chang C-T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews. 2018; 92: 883-96. Doi: 10.1016/j.rser.2018.05.007
  63. Wang W-C, Teah H-Y. Life cycle assessment of small-scale horizontal axis wind turbines in Taiwan. Journal of Cleaner Production. 2017; 141: 492-501. Doi: 10.1016/j.jclepro.2016.09.128
  64. Nguyen TAT, Chou S-Y. Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies. Applied Energy. 2018; 217: 336-45. Doi: 10.1016/j.apenergy.2018.02.137
  65. Nerini FF, Dargaville R, Howells M, Bazilian M. Estimating the cost of energy access: The case of the village of Suro Craic in Timor Leste. Energy. 2015; 79: 385-97. Doi: 10.1016/j.energy.2014.11.025
  66. Fios F. Mapping the potential of green energy to border societies of Indonesia and Timor Leste (a preliminary study). MATEC Web of Conferences. 2018; 197: 13006. Doi: 10.1051/matecconf/201819713006
  67. Dornan M, Shah KU. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States. Energy Policy. 2016; 98: 759-67. Doi: 10.1016/j.enpol.2016.05.035
  68. Kahia M, Ben Jebli M, Belloumi M. Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries. Clean Technologies and Environmental Policy. 2019; 21(4): 871-85. Doi: 10.1007/s10098-019-01676-2
  69. World Bank. World Development Indicators 2012. © Washington, DC; 2012. Available from: https://openknowledge.worldbank.org/handle/10986/6014
  70. Rawea AS, Urooj S. Strategies, current status, problems of energy and perspectives of Yemen's renewable energy solutions. Renewable and Sustainable Energy Reviews. 2018; 82: 1655-63. Doi: 10.1016/j.rser.2017.07.015
  71. Nematollahi O, Hoghooghi H, Rasti M, Sedaghat A. Energy demands and renewable energy resources in the Middle East. Renewable and Sustainable Energy Reviews. 2016; 54: 1172-81. Doi: 10.1016/j.rser.2015.10.058
  72. Yip CMA, Gunturu UB, Stenchikov GL. Wind resource characterization in the Arabian Peninsula. Applied Energy. 2016; 164: 826-36. Doi: 10.1016/j.apenergy.2015.11.074
  73. International Energy data and Analysis Report About Yemen: U.S. Energy Information Administration. Available from: https://www.eia.gov/international/analysis/country/YEM
  74. Al-Shabi MH, Al-Shaibani R. The Current Situation and Future Prospects of the Energy Sector in Yemen Ministry of Electricity & Energy, Korea–Yemen Energy Forum. 2014.
  75. Ajlan A, Tan CW, Abdilahi AM. Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renewable and Sustainable Energy Reviews. 2017; 75: 559-70. Doi: 10.1016/j.rser.2016.11.024
  76. Baharoon DA, Rahman HA, Fadhl SO. Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector. Renewable and Sustainable Energy Reviews. 2016; 60: 498-515. Doi: 10.1016/j.rser.2015.12.110
  77. Azam MH, Abushammala M, Qazi WA. Evaluation of the significant renewable energy resources in Sultanate of Oman using Analytical Hierarchy Process. International Journal of Renewable Energy Research (IJRER). 2018; 8(3): 1528-34. Available from: https://www.ijrer-net.ijrer.org/index.php/ijrer/article/view/7910
  78. Strolla A, Peri P. World Finance Review, Middle East Investment. 2016. [Accessed: 10 June 2017]
  79. Al-Badi A. Wind power potential in Oman. International Journal of Sustainable Energy. 2011; 30(2): 110-8. Doi: 10.1016/S0960-1481(01)00143-4
  80. Sultan A-Y, Charabi Y, Gastli A, Al-Alawi S. Assessment of wind energy potential locations in Oman using data from existing weather stations. Renewable and Sustainable Energy Reviews. 2010; 14(5): 1428-36. Doi: 10.1016/j.rser.2010.01.008
  81. Kazem HA. Renewable energy in Oman: Status and future prospects. Renewable and Sustainable Energy Reviews. 2011; 15(8): 3465-9. Doi: 10.1016/j.rser.2011.05.015
  82. Al-Douri Y, Waheeb SA, Voon CH. Review of the renewable energy outlook in Saudi Arabia. Journal of Renewable and Sustainable Energy. 2019; 11(1): 015906. Doi: 10.1063/1.5058184
  83. Saudi Arabia’s Vision 2030. 2016. http://vision2030.gov.sa/en/ntp 84. Chen W, Castruccio S, Genton MG, Crippa P. Current and Future Estimates of Wind Energy Potential Over Saudi Arabia. Journal of Geophysical Research: Atmospheres. 2018; 123(12): 6443-59. Doi: 10.1029/2017JD028212
  84. Allhibi H, Chowdhury H, Zaid M, Loganathan B, Alam F. Prospect of wind energy utilization in Saudi Arabia: A review. Energy Procedia. 2019; 160: 746-51. Doi: 10.1016/j.egypro.2019.02.184
  85. Al-Sharafi A, Sahin AZ, Ayar T, Yilbas BS. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews. 2017; 69: 33-49. Doi: 10.1016/j.rser.2016.11.157
  86. Darwish AS, Shaaban S, Marsillac E, Mahmood NM. A methodology for improving wind energy production in low wind speed regions, with a case study application in Iraq. Computers & Industrial Engineering. 2019; 127: 89-102. Doi: 10.1016/j.cie.2018.11.049
  87. Al-Hussieni AJM. A prognosis of wind energy potential as a power generation source in Basra City, Iraq State. European Scientific Journal. 2014; 10(36): 163-76. Available from: https://eujournal.org/index.php/esj/article/view/4895
  88. Altmimi A, Ceekhan A, editors. Calculate and compare five of Weibull distribution parameters to estimate wind power in Iraq. 2017 8th International Renewable Energy Congress (IREC); 2017 3/2017. Amman, Jordan: IEEE.
  89. Kazem HA, Chaichan MT. Status and future prospects of renewable energy in Iraq. Renewable and Sustainable Energy Reviews. 2012; 16(8): 6007-12. Doi: 10.1016/j.rser.2012.03.058
  90. Mahdy AM, Al-Waeli AA, Al-Asadi KA. Can Iraq use the wind energy for power generation? International Journal of Computation and Applied Sciences. 2017; 3(2): 233-8. Available from: http://un.uobasrah.edu.iq/papers/4744.pdf
  91. Ali SM, Shaban AH, Resen AK. Integrating WAsP and GIS tools for establishing best positions for wind turbines in South Iraq. International Journal of Computer and Information Technology. 2014; 3(3): 588-93. Available from: https://www.researchgate.net/publication/281651304
  92. Abdali T, Pahlavan S, Jahangiri M, Alidadi Shamsabadi A, Sayadi F. Techno-Econo-Environmental study on the use of domestic-scale wind turbines in Iran. Energy Equipment and Systems. 2019; 7(4). Doi: 10.22059/ees.2019.37669
  93. Dehkordi MHR, Isfahani AHM, Rasti E, Nosouhi R, Akbari M, Jahangiri M. Energy-Economic-Environmental assessment of solar-wind-biomass systems for finding the best areas in Iran: A case study using GIS maps. Sustainable Energy Technologies and Assessments. 2022; 53: 102652. Doi: 10.1016/j.seta.2022.102652
  94. Ghaderian A, Jahangiri M, Saghaei H. Emergency Power Supply for NICU of a Hospital by Solar-Wind-Based System, a Step Towards Sustainable Development. Journal of Solar Energy Research. 2020; 5(3). Doi: 10.22059/jser.2020.306423.1166
  95. Jahangiri M, Haghani A, Mostafaeipour A, Khosravi A, Raeisi HA. Assessment of solar-wind power plants in Afghanistan: A review. Renewable and Sustainable Energy Reviews. 2019; 99: 169-90. Doi: 10.1016/j.rser.2018.10.003
  96. Rezaei M, Mostafaeipour A, Jahangiri M. Economic assessment of hydrogen production from sea water using wind energy: A case study. Wind Engineering. 2021; 45(4): 1002-19. Doi: 10.1177/0309524X20944391
  97. Sedaghat A, Alkhatib F, Eilaghi A, Mehdizadeh A, Borvayeh L, Mostafaeipour A, Hassanzadeh A, Jahangiri M. Optimization of capacity factors based on rated wind speeds of wind turbines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020: 1-22. Doi: 10.1080/15567036.2020.1740834
  98. Ministry of energy, Renewable Energy and Energy Efficiency Organization (SATBA). 2020. http://www.satba.gov.ir/suna_content/media/image/2019/03/7500_orig.jpg [Accessed: 23 March 2021]
  99. Alayi R, Jahangiri M, Guerrero JWG, Akhmadeev R, Shichiyakh RA, Zanghaneh SA. Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms. Clean Energy. 2021; 5(4): 713-30. Doi: 10.1093/ce/zkab041
  100. Mostafaeipour A, Rezaei M, Moftakharzadeh A, Qolipour M, Salimi M. Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy. 2019; 44(16): 7983-95. Doi: 10.1016/j.ijhydene.2019.02.047
  101. Saeidi D, Sedaghat A, Alamdari P, Alemrajabi AA. Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Applied Energy. 2013; 101: 765-75. Doi: 10.1016/j.apenergy.2012.07.047
  102. Tahani M, Babayan N, Mehrnia S, Shadmehri M. A novel heuristic method for optimization of straight blade vertical axis wind turbine. Energy Conversion and Management. 2016; 127: 461-76. Doi: 10.1016/j.enconman.2016.08.094
  103. Tavana A, Emami Javid A, Houshfar E, Mahmoudzadeh Andwari A, Ashjaee M, Shoaee S, Maghmoomi A, Marashi F. Toward renewable and sustainable energies perspective in Iran. Renewable Energy. 2019; 139: 1194-216. Doi: 10.1016/j.renene.2019.03.022
  104. RENA. Renewable Energy Country Profile - Afghanistan: International Renewable Energy Agency; 2015. Available from: http://www.irena.org/REmaps/asia.aspx [Accessed: 23 March 2021]
  105. Ershad AM, Brecha RJ, Hallinan K. Analysis of solar photovoltaic and wind power potential in Afghanistan. Renewable Energy. 2016; 85: 445-53. Doi: 10.1016/j.renene.2015.06.067
  106. Jahangiri M, Riahi R, editors. Potential of wind hydrogen production in Afghanistan. 8th Iran Wind Energy Conference; 2022. Available from: https://www.researchgate.net/profile/Mehdi-Jahangiri-3/publication/360859768
  107. Shoaib A, Ariaratnam S. A Study of Socioeconomic Impacts of Renewable Energy Projects in Afghanistan. Procedia Engineering. 2016; 145: 995-1003. Doi: 10.1016/j.proeng.2016.04.129
  108. Solangi YA, Tan Q, Mirjat NH, Valasai GD, Khan MWA, Ikram M. An Integrated Delphi-AHP and Fuzzy TOPSIS Approach toward Ranking and Selection of Renewable Energy Resources in Pakistan. Processes. 2019; 7(2): 118. Doi: 10.3390/pr7020118
  109. Rafique MM, Rehman S. National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview. Renewable and Sustainable Energy Reviews. 2017; 69: 156-67. Doi: 10.1016/j.rser.2016.11.057
  110. Ali Y, Butt M, Sabir M, Mumtaz U, Salman A. Selection of suitable site in Pakistan for wind power plant installation using analytic hierarchy process (AHP). Journal of Control and Decision. 2018; 5(2): 117-28. Doi: 10.1080/23307706.2017.1346490
  111. Baloch M, Abro S, Sarwar Kaloi G, Mirjat N, Tahir S, Nadeem M, Gul M, Memon Z, Kumar M. A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones. Sustainability. 2017; 9(9): 1611. Doi: 10.3390/su9091611
  112. Baloch MH, Tahir Chauhdary S, Ishak D, Kaloi GS, Nadeem MH, Wattoo WA, Younas T, Hamid HT. Hybrid energy sources status of Pakistan: An optimal technical proposal to solve the power crises issues. Energy Strategy Reviews. 2019; 24: 132-53. Doi: 10.1016/j.esr.2019.02.001
  113. Gul M, Tai N, Huang W, Nadeem M, Yu M. Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power. Sustainability. 2019; 11(5): 1391. Doi: 10.3390/su11051391
  114. Khahro SF, Tabbassum K, Soomro AM, Dong L, Liao X. Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan. Energy Conversion and Management. 2014; 78: 956-67. Doi: 10.1016/j.enconman.2013.06.062
  115. Pakistan Energy Yearbook; Hydrocarbon Development Institute of Pakistan. Islamabad, Pakistan; 2017. https://petroleum.gov.pk/SiteImage/Publication/Year%20Book%202017-18.pdf [Accessed: 10 January 2023]
  116. Shaikh F, Ji Q, Fan Y. The diagnosis of an electricity crisis and alternative energy development in Pakistan. Renewable and Sustainable Energy Reviews. 2015; 52: 1172-85. Doi: 10.1016/j.rser.2015.08.009
  117. Zafar U, Ur Rashid T, Khosa AA, Khalil MS, Rashid M. An overview of implemented renewable energy policy of Pakistan. Renewable and Sustainable Energy Reviews. 2018; 82: 654-65.Doi: 10.1016/j.rser.2017.09.034
  118. Kulkarni S, Deo MC, Ghosh S. Impact of active and break wind spells on the demand–supply balance in wind energy in India. Meteorology and Atmospheric Physics. 2018; 130(1): 81-97. Doi: 10.1007/s00703-017-0501-5
  119. Saraswat SK, Digalwar AK, Yadav SS, Kumar G. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renewable Energy. 2021; 169: 865-84. Doi: 10.1016/j.renene.2021.01.056
  120. Deshmukh R, Wu GC, Callaway DS, Phadke A. Geospatial and techno-economic analysis of wind and solar resources in India. Renewable Energy. 2019; 134: 947-60. Doi: 10.1016/j.renene.2018.11.073
  121. Kapadia K, Agrawal A, Sharma H, Malviya N. India’s Renewable Energy Potential: A Review. SSRN Electronic Journal. 2019. Doi: 10.2139/ssrn.3329776
  122. Renewable Energy Snapshot: Turkmenistan, UNDP in Europe and Central Asia. Available from: https://www.scribd.com/document/224005040/Renewable-Energy-Snapshot-Turkmenistan [Accessed: 10 January 2023]
  123. Wind Energy Potential in Turkmenistan, Global Energy Network Institute (GENI). Available from: http://www.geni.org/globalenergy/library/renewable-energy-resources/world/asia/wind-asia/wind-turkmenistan.shtml
  124. Assessment on clean infrastructure development in Turkmenistan. United Nations Economic Commission for Europe; 2013. [Accessed: 22 November 2019]
  125. Energypedia. Turkmenistan Energy Situation: Energypedia; 2019. Available from: https://energypedia.info/wiki/Turkmenistan_Energy_Situation.
  126. Nabiyeva K. Renewable energy and energy efficiency in Central Asia: prospects for German engagement. Michael Succow Foundation: Greifswald, Germany. 2015; 65.
  127. Doukas H, Marinakis V, Karakosta C, Psarras J. Promoting renewables in the energy sector of Tajikistan. Renewable Energy. 2012; 39(1): 411-8. Doi: 10.1016/j.renene.2011.09.007
  128. Karimov KS, Akhmedov KM, Abid M, Petrov GN. Effective management of combined renewable energy resources in Tajikistan. Science of The Total Environment. 2013; 461-462: 835-8. Doi: 10.1016/j.scitotenv.2013.05.095
  129. Panwar V, Nijhar I, Borodyna O, Opitz-Stapleton S, Nadin R. Opportunities and co-benefits of transitioning to a net-zero economy in Kyrgyzstan, Tajikistan and Uzbekistan. ODI Report; 2022. Available from: https://cdn.odi.org/media/documents/ODI_Opportunities_net-zero_economy_Kyrgyzstan_Tajikistan_Uzbekistan.pdf
  130. Kayumov A, Kabutov K. Socio-Economic Assessment of the Production and Consumption of Renewable Energy Sources in the Republic of Tajikistan. Center of Climate Change, Hydro-Meteorological Agency, Dushanbe, Tajikistan. 2005. Available from: https://unece.org/fileadmin/DAM/energy/se/pdfs/gee21/projects/others/Tajikistan.pdf
  131. Global Greenhouse Gas Emissions Data: United States Environmental Protection Agency (EPA). Available from: https://19january2017snapshot.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data.html [Accessed: 10 December 2021]
  132. Liang Y, Yu B, Wang L. Costs and benefits of renewable energy development in China's power industry. Renewable Energy. 2019; 131: 700-12. Doi: 10.1016/j.renene.2018.07.079
  133. Ren G, Wan J, Liu J, Yu D. Characterization of wind resource in China from a new perspective. Energy. 2019; 167: 994-1010. Doi: 10.1016/j.energy.2018.11.032
  134. Jiang H, Wang J, Dong Y, Lu H. Comprehensive assessment of wind resources and the low-carbon economy: An empirical study in the Alxa and Xilin Gol Leagues of inner Mongolia, China. Renewable and Sustainable Energy Reviews. 2015; 50: 1304-19. Doi: 10.1016/j.rser.2015.05.082
  135. Murthy KSR, Rahi OP. A comprehensive review of wind resource assessment. Renewable and Sustainable Energy Reviews. 2017; 72: 1320-42. Doi: 10.1016/j.rser.2016.10.038
  136. Sahu BK. Wind energy developments and policies in China: A short review. Renewable and Sustainable Energy Reviews. 2018; 81: 1393-405. Doi: 10.1016/j.rser.2017.05.183
  137. Ahmadov E, Khalilov T. Azerbaijan from Inclusive and Innovative Governance to Green Economy. Economic and Social Development: Book of Proceedings. 2019: 988-1001. Available from: https://search.proquest.com/openview/1a0da16e9739df9e1adbfc8c0b6940b0/1?pq-origsite=gscholar&cbl=2033472
  138. Safarov V. Renewable energy perspectives of oil exporter Azerbaijan. Renewable Energy. 2015: 1-5. Available from: https://www.researchgate.net/profile/Vasif-Safarov/publication/275270339_Renewable_Energy_Perspectives_of_oil_exporter_Azerbaijan/links/5536364f0cf20ea35f112c9a/Renewable-Energy-Perspectives-of-oil-exporter-Azerbaijan.pdf
  139. Vidadili N, Suleymanov E, Bulut C, Mahmudlu C. Transition to renewable energy and sustainable energy development in Azerbaijan. Renewable and Sustainable Energy Reviews. 2017; 80: 1153-61. Doi: 10.1016/j.rser.2017.05.168
  140. Hasanov SLO, Hasanov ELO. Innovative Basis of Research of Energy-Efficient Potential and Effectiveness of Renewable Energy Sources. Scientific Notes of Sumy State Pedagogical University Geographical Sciences. 2018; 1(9): 3-10. Available from: https://zenodo.org/record/1252793
  141. Salamov O, Mammadov F, Samadova U. Prospects of wind energy application in Azerbaijan. International Scientific Journal for Alternative Energy and Ecology 2010; (1): 132-44. Doi: https://cyberleninka.ru/article/n/prospects-of-wind-energy-application-in-azerbaijan
  142. Ramazanov N. Renewable Energy: International Best-Practice and Prospects for the Development in Azerbaijan, Presentation at the conference organized by OSCE; 2009, Ministry of Energy: Ministry of Energy; 2009. Available from: https://www.osce.org/files/f/documents/2/c/40017.pdf
  143. Aliyev F. Azerbaijan National Report on the Project Enhancing Synergies in CIS National Programmes on Energy Efficiency and Energy Saving for greater Energy Security. UN Economic Commission for Europe, Geneva, Switzerland. 2013. Available from: https://unece.org/fileadmin/DAM/energy/se/pdfs/ee21/EE21_Subregional_projects/AzerbaijanAliyev-05.pdf
  144. Kosowska K, editor The Energy Security of Armenia. 18th International Multidisciplinary Scientific GeoConference: SGEM, 18(1.4), pp. 875-882. Doi: 10.5593/sgem2018/1.4/S06.114
  145. Energy Union and Energy Security in EaP Countries 2015 Available from: weg.ge/en/energy-union-and-energy-security-eap-countries
  146. Ashotovich MH. The role of renewable energy in ensuring energy security of the Republic of Armenia. Региональные проблемы преобразования экономики. 2018; 10(96): 222-9. Available from: https://cyberleninka.ru/article/n/the-role-of-renewable-energy-in-ensuring-energy-security-of-the-republic-of-armenia
  147. Armenia Power Sector Policy Note. 2014. Available from: https://documents1.worldbank.org/curated/en/488891467998515807/pdf/94187-REVISED-WP-P133834-PUBLIC-Box391432B-Armenia-Power-Policy-Note-full-version-very-final-ENGLISH.pdf
  148. Energy Strategy of Armenia. Accomplishments, Challenges, Next Steps. Presented by A. Galstyan, Deputy Minister of Ministry of Energy and Natural Resources, 2014. Available from: http://www.minenergy.am/storage/files/pages/pg_0732707265_MoENR_Presentation_June3.pdf [Accessed: 10 January 2023]
  149. EU supports first wind farm in Georgia 2018 [Updated 27. 05. 2018]. Available from: https://eeas.europa.eu/delegations/georgia_en/45476/EU%20supports%20first%20wind%20farm%20in%20Georgia.
  150. Menabdishvili M. Wind and solar energy in Georgian households: Are they becoming more popular? : Georgian Journal; 2018. Available from: https://www.georgianjournal.ge/business/34094-wind-and-solar-energy-in-georgian-households-are-they-becoming-more-popular.html.
  151. Wind power in Georgia. Available from: https://en.wikipedia.org/wiki/Wind_power_in_Georgia
  152. Chomakhidze D, Melikidze M. Renewable energy potential and its utilization in Georgia. Journal of Environmental Science and Renewable Resources. 2018; 2(2): 105. Available from: https://erranet.org/download/chomakhidze-melikidze-res-e-potential-and-its-utilization-in-georgia/#
  153. Georgian Energy Market Operator (ESCO), Annual Reports 2005-2017. http://esco.ge [Accessed: 10 January 2023]
  154. Assembayeva M, Egerer J, Mendelevitch R, Zhakiyev N. A spatial electricity market model for the power system: The Kazakhstan case study. Energy. 2018; 149: 762-78. Doi: 10.1016/j.energy.2018.02.011
  155. Karatayev M, Clarke ML. A review of current energy systems and green energy potential in Kazakhstan. Renewable and Sustainable Energy Reviews. 2016; 55: 491-504. Doi: 10.1016/j.rser.2015.10.078
  156. Kerimray A, Kolyagin I, Suleimenov B. Analysis of the energy intensity of Kazakhstan: from data compilation to decomposition analysis. Energy Efficiency. 2018; 11(2): 315-35. Doi: 10.1007/s12053-017-9565-9
  157. Koch N, Tynkkynen V-P. The Geopolitics of Renewables in Kazakhstan and Russia. Geopolitics. 2021; 26(2): 521-40. Doi: 10.1080/14650045.2019.1583214
  158. Kashkinbekov A. Renewable Energy of Kazakhstan. Association of Renewable Energy of Kazakhstan; 2018. Available from: http://www.confindustria.ge.it/images/downloads/8fb71deab046e5cddf6c75b9f659c435de7a4c71/AREK%20KazEnergy%20Forum.pdf
  159. Jianzhong X, Assenova A, Erokhin V. Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability. 2018; 10(9): 3315. Doi: 10.3390/su10093315
  160. Karatairi E, Rojas-Solórzano LR, Kerimray A. Renewable energy in Kazakhstan rises in the shadow of fossil fuels. MRS Bulletin. 2018; 43(9): 656-8. Doi: 10.1557/mrs.2018.215
  161. MacGregor J. Determining an optimal strategy for energy investment in Kazakhstan. Energy Policy. 2017; 107: 210-24. Doi: 10.1016/j.enpol.2017.04.039
  162. Mukatov B, Khabibullin R. Renewable energy sources in future energy balance of the republic of Kazakhstan. E3S Web of Conferences. 2018; 58: 03006. Doi: 10.1051/e3sconf/20185803006
  163. Babazhanova Z, Khambar B, Yessenbekova A, Sartanova N, Jandossova F. New energy system in the Republic of Kazakhstan: Exploring the possibility of creating and mechanisms of implementing. International Journal of Energy Economics and Policy. 2017; 7(6): 164-70. Available from: https://www.econjournals.com/index.php/ijeep/article/view/5871/3450
  164. Teleuyev GB, Akulich OV, Kadyrov MA, Ponomarev AA, Hasanov EL. Problems of legal regulation for use and development of renewable energy sources in the republic of Kazakhstan. International Journal of Energy Economics and Policy. 2017; 7(5): 296-301. Available from: http://zbw.eu/econis-archiv/bitstream/11159/1320/1/1005321345.pdf
  165. Zavadskiy V, Revalde G, editors. Involving renewable energy sources in generating process: example of Kazakhstan. 17th International Scientific Conference Engineering for Rural Development; 2018.
  166. Okutsu A, Staff WN. Asia leads the charge in growth of renewable energy, Nikkei Asian Review; 2018 [Updated May 1, 2018]. Available from: https://asia.nikkei.com/Economy/Asia-leads-the-charge-in-growth-of-renewable-energy.
  167. Mentis D, Siyal SH, Korkovelos A, Howells M. Estimating the spatially explicit wind generated electricity cost in Africa - A GIS based analysis. Energy Strategy Reviews. 2017; 17: 45-9. Doi: 10.1016/j.esr.2017.07.002
  168. Bonham-Carter G. Geographic information systems for geoscientists: modelling with GIS. New York: Pergamon: Elsevier; 1994. p. 398. ISBN: 9781483144948
  169. Moghaddam MK, Noorollahi Y, Samadzadegan F, Sharifi MA, Itoi R. Spatial data analysis for exploration of regional scale geothermal resources. Journal of Volcanology and Geothermal Research. 2013; 266: 69-83. Doi: 10.1016/j.jvolgeores.2013.10.003
  170. Noorollahi Y, Itoi R. Geothermal power plant site selection with environmental consideration in Namafjall area, North Iceland. Transactions - Geothermal Resources Council. 2007; 31: 193–8. Available from: https://kyushu-u.pure.elsevier.com/en/publications/geothermal-power-plant-site-selection-with-environmental-consider
  171. Pathak AK, Sharma MP, Bundele M. A critical review of voltage and reactive power management of wind farms. Renewable and Sustainable Energy Reviews. 2015; 51: 460-71. Doi: 10.1016/j.rser.2015.06.015
  172. Shata AA, Hanitsch R. Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt. Renewable Energy. 2006; 31(8): 1183-202. Doi: 10.1016/j.renene.2005.06.015
  173. Rodman LC, Meentemeyer RK. A geographic analysis of wind turbine placement in Northern California. Energy Policy. 2006; 34(15): 2137-49. Doi: 10.1016/j.enpol.2005.03.004
  174. Latinopoulos D, Kechagia K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy. 2015; 78: 550-60. Doi: 10.1016/j.renene.2015.01.041
  175. Mourmouris JC, Potolias C. A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy. 2013; 52: 522-30. Doi: 10.1016/j.enpol.2012.09.074
  176. Gass V, Schmidt J, Strauss F, Schmid E. Assessing the economic wind power potential in Austria. Energy Policy. 2013; 53: 323-30. Doi: 10.1016/j.enpol.2012.10.079

178.Hossain J, Sinha V, Kishore VVN. A GIS based assessment of potential for windfarms in India. Renewable Energy. 2011; 36(12): 3257-67. Doi: 10.1016/j.renene.2011.04.017

  1. İlkiliç C. Wind energy and assessment of wind energy potential in Turkey. Renewable and Sustainable Energy Reviews. 2012; 16(2): 1165-73. Doi: 10.1016/j.rser.2011.11.021
  2. Lopez A, Roberts B, Heimiller D, Blair N, Porro G. U.S. Renewable Energy Technical Potentials. A GIS-Based Analysis. 2012. Report No.: NREL/TP--6A20-51946, Available from: https://www.nrel.gov/docs/fy12osti/51946.pdf.
  3. Lu X, McElroy MB. Global Potential for Wind-Generated Electricity. Wind Energy Engineering: Elsevier; 2017. p. 51-73. Available from: https://www.pnas.org/doi/pdf/10.1073/pnas.0904101106
  4. Latu S. Sustainable Development: The Role of GIS and Visualisation. The Electronic Journal of Information Systems in Developing Countries. 2009; 38(1): 1-17. Doi: 10.1002/j.1681-4835.2009.tb00268.x
  5. Wind Power by Country [Internet], 2021. [Cited 11 April 2024]. Available from: https://wisevoter.com/country-rankings/wind-power-by-country.