Document Type : Original Article

Authors

Faculty of Electrical & Computer Engineering, Semnan University, Semnan, Iran

Abstract

In this paper, a novel approach is introduced for Fault Detection and Fault Location in power systems that incorporate Large-Scale Photovoltaic Power Plants (LSPPPs). Given that short-circuit (SC) characteristics in photovoltaic systems differ significantly from those observed in traditional Synchronous Generators (SGs). The increasing integration of LSPPPs into the power grid is anticipated to have an impact on the performance of conventional protection relay systems; initially designed for SG-dominated setups. Therefore, the proposed method revolves around analyzing the influence of LSPPPs on the alteration of observed transmission line impedance to identify and locate faults accurately. Furthermore, the methodology takes into consideration factors such as fault location, fault resistance, fault type, changing the LSPPP generation, and noise conditions. when calculating the phase angle of the fault loop current. The effectiveness of this approach was assessed through testing and evaluation on 2-bus and IEEE 39-bus test systems connected to an LSPPP, simulated using PSCAD/EMTDC and MATLAB/SIMULINK.

Keywords

  1. Salazar-Chiralt R, Cheah-Mane M, Mateu-Barriendos E, Bullich-Massague E, Prieto-Araujo E, Mehrjerdi H, Gomis-Bellmunt O. Dynamic interactions in large scale photovoltaic power plants with frequency and voltage support. Electric Power Systems Research. 2022; 207: 107848. Doi: 10.1016/j.epsr.2022.107848
  2. Pishkar I, M Beigi S. A comprehensive evaluation of renewable energy systems with a backup to provide a part of electrical needs of a hospital: A case study in grid-connected mode. Iranica Journal of Energy & Environment. 2024; 15(1): 1-9. Doi: 10.5829/IJEE.2024.15.01.01
  3. Vrana TK, Attya A, Trilla L. Future-oriented generic grid code regarding wind power plants in Europe. International Journal of Electrical Power & Energy Systems. 2021; 125: 106490. Doi: 10.1016/j.ijepes.2020.106490
  4. Tahiru A-W, Takal S, Sunkari E, Ampofo S. A Review on renewable energy scenario in Ethiopia. Iranian (Iranica) Journal of Energy & Environment. 2023; 14(4): 372-84. Doi: 10.5829/ijee.2023.14.04.07
  5. Varma RK, Akbari M. Simultaneous fast frequency control and power oscillation damping by utilizing PV solar system as PV-STATCOM. IEEE Transactions on Sustainable Energy. 2019; 11(1): 415-25. Doi: 10.1109/TSTE.2019.2892943
  6. Ryu A, Ishii H, Hayashi Y. Battery smoothing control for photovoltaic system using short-term forecast with total sky images. Electric Power Systems Research. 2021; 190: 106645. Doi: 10.1016/j.epsr.2020.106645
  7. Hasanien HM. An adaptive control strategy for low voltage ride through capability enhancement of grid-connected photovoltaic power plants. IEEE Transactions on power systems. 2015; 31(4): 3230-7. Doi: 10.1109/TPWRS.2015.2466618
  8. Haddadi A, Farantatos E, Kocar I, Karaagac U. Impact of inverter based resources on system protection. Energies. 2021; 14(4): 1050. Doi: 10.3390/en14041050
  9. Kou G, Chen L, VanSant P, Velez-Cedeno F, Liu Y. Fault characteristics of distributed solar generation. IEEE Transactions on Power Delivery. 2019; 35(2): 1062-4. Doi: 10.1109/TPWRD.2019.2907462
  10. Kauffmann T, Karaagac U, Kocar I, Jensen S, Mahseredjian J, Farantatos E. An accurate type III wind turbine generator short circuit model for protection applications. IEEE Transactions on Power Delivery. 2016; 32(6): 2370-9. Doi: 10.1109/TPWRD.2016.2614620
  11. Kauffmann T, Karaagac U, Kocar I, Jensen S, Farantatos E, Haddadi A, Mahseredjian J. Short-circuit model for type-IV wind turbine generators with decoupled sequence control. IEEE Transactions on Power Delivery. 2019; 34(5): 1998-2007. Doi: 10.1109/TPWRD.2019.2908686
  12. Kauffmann T, Karaagac U, Kocar I, Gras H, Mahseredjian J, Cetindag B, Farantatos E. Phasor domain modeling of type III wind turbine generator for protection studies. 2015 IEEE Power & Energy Society General Meeting. 2015: 1-5. Doi: 10.1109/PESGM.2015.7286606
  13. Nagpal M, Jensen M, Higginson M. Protection challenges and practices for interconnecting inverter based resources to utility transmission systems. IEEE Power Energy Soc. 2020: 1-65. Doi: 10.13140/RG.2.2.22715.90406
  14. Hooshyar A, Azzouz MA, El-Saadany EF. Distance protection of lines connected to induction generator-based wind farms during balanced faults. IEEE Transactions on Sustainable Energy. 2014; 5(4): 1193-203. Doi: 10.1109/TSTE.2014.2336773
  15. Hooshyar A, Azzouz MA, El-Saadany EF. Distance protection of lines emanating from full-scale converter-interfaced renewable energy power plants—Part I: Problem statement. IEEE Transactions on Power Delivery. 2014; 30(4): 1770-80. Doi: 10.1109/TPWRD.2014.2369479
  16. Hooshyar A, Azzouz MA, El-Saadany EF. Distance protection of lines emanating from full-scale converter-interfaced renewable energy power plants—Part II: Solution description and evaluation. IEEE Transactions on Power Delivery. 2014; 30(4): 1781-91. Doi: 10.1109/TPWRD.2014.2369480
  17. Haddadi A, Kocar I, Farantatos E. Impact of inverter-based resources on protection schemes based on negative sequence components. EPRI: Palo Alto, CA, USA. 2019; 36(1): 289-98. Doi: 10.1109/TPWRD.2020.2978075
  18. Guttromson R. Impact of inverter based resource (IBR) negative sequence current injection on transmission system protection. 2020. Available at: https://www.osti.gov/servlets/purl/1810044
  19. Kou G, Jordan J, Cockerham B, Patterson R, VanSant P. Negative-sequence current injection of transmission solar farms. IEEE Transactions on Power Delivery. 2020; 35(6): 2740-3. Doi: 10.1109/TPWRD.2020.3014783
  20. Haddadi A, Kocar I, Karaagac U, Mahseredjian J, Farantatos E. Impact of renewables on system protection: wind/PV short-circuit phasor model library and guidelines for system protection studies. EPRI, USA. 2017. Available at: https://www.epri.com/research/products/3002002810
  21. Haddadi A, Kocar I, Mahseredjian J, Karaagac U, Farantatos E. Negative sequence quantities-based protection under inverter-based resources Challenges and impact of the German grid code. Electric Power Systems Research. 2020; 188: 106573. Doi: 10.1016/j.epsr.2020.106573
  22. Haddadi A, Kocar I, Karaagac U, Gras H, Farantatos E. Impact of wind generation on power swing protection. IEEE Transactions on Power Delivery. 2019; 34(3): 1118-28. Doi: 10.1109/TPWRD.2019.2896135
  23. Singh B, Kumar S, Jain C. Damped-SOGI-based control algorithm for solar PV power generating system. IEEE Transactions on Industry Applications. 2017; 53(3): 1780-8. Doi: 10.1109/TIA.2017.2677358
  24. Rosini A, Mestriner D, Labella A, Bonfiglio A, Procopio R. A decentralized approach for frequency and voltage regulation in islanded PV-Storage microgrids. Electric Power Systems Research. 2021; 193: 106974. Doi: 10.1016/j.epsr.2020.106974
  25. Crăciun B-I, Kerekes T, Séra D, Teodorescu R. Frequency support functions in large PV power plants with active power reserves. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2014; 2(4): 849-58. Doi: 10.1109/JESTPE.2014.2344176
  26. Al Awadhi N, El Moursi MS. A novel centralized PV power plant controller for reducing the voltage unbalance factor at transmission level interconnection. IEEE Transactions on Energy Conversion. 2016; 32(1): 233-43. Doi: 10.1109/TEC.2016.2620477
  27. Paladhi S, Pradhan AK. Adaptive distance protection for lines connecting converter-interfaced renewable plants. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2020; 9(6): 7088-98. Doi: 10.1109/JESTPE.2020.3000276
  28. Armendariz M, Paridari K, Wallin E, Nordström L. Comparative study of optimal controller placement considering uncertainty in PV growth and distribution grid expansion. Electric Power Systems Research. 2018; 155: 48-57. Doi: 10.1016/j.epsr.2017.10.001
  29. Liang Y, Lu Z, Li W, Zha W, Huo Y. A novel fault impedance calculation method for distance protection against fault resistance. IEEE Transactions on Power Delivery. 2019; 35(1): 396-407. Doi: 10.1109/TPWRD.2019.2920690
  30. Mansouri N, Lashab A, Sera D, Guerrero JM, Cherif A. Large photovoltaic power plants integration: A review of challenges and solutions. Energies. 2019; 12(19): 3798. Doi: 10.3390/en12193798
  31. Gallo D, Langella R, Testa A, Hernandez J, Papič I, Blažič B, Meyer J. Case studies on large PV plants: Harmonic distortion, unbalance and their effects. 2013 IEEE Power & Energy Society General Meeting. 2013: 1-5. Doi: 10.1109/PESMG.2013.6672271
  32. Jalilian A, Muttaqi KM, Sutanto D, Robinson D. Distance Protection of Transmission Lines in Presence of Inverter-based Resources: A New Earth Fault Detection Scheme during Asymmetrical Power Swings. IEEE Transactions on Industry Applications. 2022; 58(2): 1899-909. Doi: 10.1109/TIA.2022.3146219
  33. Paladhi S, Pradhan AK. Adaptive fault type classification for transmission network connecting converter-interfaced renewable plants. IEEE Systems Journal. 2020; 15(3): 4025-36. Doi: 10.1109/JSYST.2020.3010343
  34. Rajapakse A, Majumder R, Energy SGR, Nelson R. Modification of commercial fault calculation programs for wind turbine generators. IEEE Power Energy Society (June 2020). 2020: 81. Available at: https://www.pes-psrc.org/kb/report/093.pdf
  35. Chao C, Zheng X, Weng Y, Liu Y, Gao P, Tai N. Adaptive distance protection based on the analytical model of additional impedance for inverter-interfaced renewable power plants during asymmetrical faults. IEEE Transactions on Power Delivery. 2021; 37(5): 3823-34. Doi: 10.1109/TPWRD.2021.3138128
  36. Fang Y, Jia K, Yang Z, Li Y, Bi T. Impact of inverter-interfaced renewable energy generators on distance protection and an improved scheme. IEEE Transactions on Industrial Electronics. 2018; 66(9): 7078-88. Doi: 10.1109/TIE.2018.2873521
  37. Jamiati M. Modeling of Maximum Solar Power Tracking by Genetic Algorithm Method. Iranian (Iranica) Journal of Energy & Environment. 2021; 12(2): 118-24. Doi: 10.5829/IJEE.2021.12.02.03
  38. Chowdhury A, Paladhi S, Pradhan AK. Nonunit protection of parallel lines connecting solar photovoltaic plants. IEEE Systems Journal. 2022. Doi: 10.1109/JSYST.2022.3229349
  39. Taylo ADC. IEEE 39 Bus System, . 2018. Available at: http://psdyn.ece.wisc.edu/IEEE_benchmarks
  40. Liang Y, Li W, Huo Y. Zone I distance relaying scheme of lines connected to MMC-HVDC stations during asymmetrical faults: Problems, challenges, and solutions. IEEE Transactions on Power Delivery. 2020; 36(5): 2929-41. Doi: 10.1109/TPWRD.2020.3030332