Document Type : ACEC-2023

Authors

Manufacturing and Production Department, Faculty of Engineering, Arak University, Arak, Iran

Abstract

In this paper, an axial flux permanent magnet generator for a 30 kW direct drive wind turbine is designed and the design parameters were optimized with the aim of achieving high efficiency. In order to reduce the cogging torque and electromagnetic torque ripple components, the air core topology has been used, and with the aim of increasing the power capacity of the generator, a modular structure has been used. The advantage of the modular design is that each module can be considered as a generator unit and depending on the wind speed conditions, the number of units corresponding to the wind speed can be placed in the circuit and the generator will always work with maximum efficiency. First, by using the governing equations, the dimensions and performance characteristics of the generator are determined, and then a generator prototype is fabricated based on the electromagnetic design. In order to evaluate the output performance of the generator, machine simulation was performed in Maxwell finite element analysis software and the characteristic curves of voltage, current and ohmic losses were extracted. In order to evaluate the accuracy of the results, the outcomes of the analytical method have been compared with the experimental tests results.

Keywords

Main Subjects

  1. Soderlund L, Koski A, Vihriala H, Eriksson JT., Perala R. Design of an axial flux permanent magnet wind power generator. In 1997 Eighth International Conference on Electrical Machines and Drives. 1997 Sept; 444: 224-8. Doi: 1049/cp:19971072
  2. Lovatt HC, Ramsden VS, Mecrow BC. Design of an in-wheel motor for a solar-powered electric vehicle. IEE Proceedings-Electric Power Applications. 1998 Sep 1; 145(5):402-8. Doi: 1049/cp:19971074
  3. Xue X, Zhang Z, Wu B, He S, Wang Q, Zhang W, Bi R, Cui J, Zheng Y, Xue C. Coil-levitated hybrid generator for mechanical energy harvesting and wireless temperature and vibration monitoring. Science China Technological Sciences. 2021 Jun; 64(6): 1325-34. Doi: 10.1007/s11431-020-1755-4
  4. Gieras JF, Gieras IA. Performance analysis of a coreless permanent magnet brushless motor. In Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No. 02CH37344) 2002 Oct 13; 4: 2477-82. Doi: 1109/IAS.2002.1042794
  5. Jamali Arand S, Ardebili M. Multi‐objective design and prototyping of a low cogging torque axial‐flux PM generator with segmented stator for small‐scale direct‐drive wind turbines. IET Electric Power Applications. 2016 Nov; 10(9): 889-99. Doi: 1049/iet-epa.2016.0007
  6. Tavakoli G, Jabbari A, Sheykholeslami MR. A semi-analytical, numerical and experimental study on performance characteristics of a novel hybrid-rotor CVT magnetic gearbox. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2023 Jul; 237(8): 1994-2005. Doi: 1177/09544070221103162
  7. Jabbari A. The Effect of dummy slots on machine performance in brushless permanent magnet machines: An analytical, numerical, and experimental study. Iranian Journal of Electrical & Electronic Engineering. 2022 Jun 1; 18(2). Doi: 22068/IJEEE.18.2.2284
  8. Jabbari A. Semi-analytical modeling of electromagnetic performances in magnet segmented Spoke-type permanent magnet Machine Considering Infinite and Finite Soft-Magnetic Material permeability. Iranian Journal of Electrical & Electronic Engineering. 2021 Mar 1;17(1). Doi: 22068/IJEEE.17.1.1711
  9. Jabbari A, Dubas F. The Effect of magnet width and iron core relative permeability on iron pole radii ratio in Spoke-type permanent-magnet machine: An analytical, numerical and experimental study. Iranian Journal of Electrical and Electronic Engineering. 2021 Jun 10; 17(2): 1802. Doi: 22068/IJEEE.17.2.1802
  10. Jabbari A, Dubas F. An improved model for performances calculation in spoke-type permanent-magnet machines considering magnetization orientation and finite soft-magnetic material permeability. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering. 2020 Dec 15; 39(6): 1299-314. Doi: 10.1108/COMPEL-08-2019-0326
  11. Jabbari A, Taheri H, Ghadimi AA. An analytical, numerical and experimental study on performance characteristics in a novel Vernier permanent magnet machine. Electrical Engineering. 2020 Dec; 102: 2369-79. Doi: 10.1007/s00202-020-01035-1
  12. Jabbari A, Dubas F. A New Subdomain Method for Performances Computation in Interior Permanent-Magnet (IPM) Machines. Iranian Journal of Electrical & Electronic Engineering. 2020 Mar 1; 16(1). Doi: 22068/IJEEE.16.1.26
  13. Jabbari A, Dubas F. Analytical Modelling of Magnetic Field Distribution in Spoke Type Permanent Magnet Machines. Journal of Iranian Association of Electrical and Electronics Engineers. 2020;17(3):141-51. Doi: 1001.1.26765810.1399.17.3.2.8
  14. Jabbari A. Analytical modeling of magnetic field distribution in multiphase H-type stator core permanent magnet flux switching machines. Iranian Journal of Science and Technology, Transactions of Electrical Engineering. 2019 Jul 1; 43(Suppl 1): 389-401. Doi: 10.1007/s40998-018-0113-1
  15. Jabbari A. An analytical study on iron pole shape optimization in high-speed interior permanent magnet machines. Iranian Journal of Science and Technology, Transactions of Electrical 2020 Mar; 44(1): 169-74. Doi: 10.1007/s40998-019-00217-3
  16. Jabbari A. An analytical expression for magnet shape optimization in surface-mounted permanent magnet machines. Mathematical and Computational Applications. 2018 Oct 5; 23(4): 57. Doi: 10.3390/mca23040057
  17. Jabbari A. Analytical modeling of magnetic field distribution in inner rotor brushless magnet segmented surface inset permanent magnet machines. Iranian Journal of Electrical and Electronic Engineering. 2018 Sep 10; 14(3): 259-69. Doi: 22068/IJEEE.14.3.259
  18. Jabbari A. Exact analytical modeling of magnetic vector potential in surface inset permanent magnet DC machines considering magnet segmentation. Journal of Electrical Engineering. 2018 Jan 1; 69(1): 39-45. Doi: 1515/jee-2018-0005
  19. Jabbari A. 2D analytical modeling of magnetic vector potential in surface mounted and surface inset permanent magnet machines. Iranian Journal of Electrical and Electronic Engineering. 2017 Dec 10; 13(4): 362-73. Doi: 22068/IJEEE.13.4.362
  20. Jabbari A, Shakeri M, Niaki SN. Pole shape optimization of permanent magnet synchronous motors using the reduced basis technique. Iranian Journal of Electrical and Electronic Engineering. 2010 Mar 10; 6(1): 48-55. Doi: 1001.1.17352827.2010.6.1.5.3
  21. Jabbari A, Shakeri M, Gholamian AS. Rotor pole shape optimization of permanent magnet brushless DC motors using the reduced basis technique. Advances in electrical and computer engineering. 2009 Jun 2; 9(2): 75-81. Doi: 10.4316/AECE.2009.02012
  22. Jabbari A, Shakeri M, Nabavi NS. Torque ripple minimization in PM synchronous motors using tooth shape optimization. 2010; 27-31.URL: www.sid.ir/EN/VEWSSID/J_pdf/1000820100204.pdf
  23. Jabbari A, Shakeri M, Niaki AN. Iron pole shape optimization of IPM motors using an integrated method. Advances in Electrical and Computer Engineering Journal. 2010 Feb 27; 10(1). Doi:10.4316/AECE.2010.01012
  24. Kavanagh DF, Gyftakis KN, McCulloch MD. Early-onset degradation of thin-film magnet wire insulation for electromechanical energy converters. In 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED) 2019 Aug 27; 37-43. Doi: 1109/DEMPED.2019.8864916
  25. Du Y, Xu C, Chen H, Xiao F, Zhu X, Zhang C, Xu L, Quan L. Low harmonics design for modular permanent magnet synchronous machine using partitioned winding. IEEE Transactions on Industrial Electronics. 2021 Sep 15; 69(9): 9268-78. Doi: 1109/TIE.2021.3111584
  26. Petrov I, Lindh P, Niemelä M, Scherman E, Wallmark O, Pyrhönen J. Investigation of a direct liquid cooling system in a permanent magnet synchronous machine. IEEE Transactions on Energy Conversion. 2019 Nov 8; 35(2): 808-17. Doi: 1109/TEC.2019.2952431
  27. Eastham JF, Profumo F, Tenconi A, Hill-Cottingham R, Coles P, Gianolio G. Novel axial flux machine for aircraft drive: design and modeling. IEEE transactions on magnetics. 2002 Sep; 38(5): 3003-5. Doi: 1109/TMAG.2002.803186
  28. El-Hasan TS, Luk PC, Bhinder FS, Ebaid MS. Modular design of high-speed permanent-magnet axial-flux generators. IEEE Transactions on magnetics. 2000 Sep; 36(5): 3558-61. Doi: 1109/20.908897