Energy and Exergy Analysis and Optimization of Turbofan Engine-TF30-P414

Document Type : Original Article


Department of Mechanical Engineering, Arak University of Technology, Arak, Iran


The turbofan engines are one of the constitutes significant components of the aero engines. In this study, the thermodynamic modeling of the TF30-P414 turbofan engine is developed and validated with reference values. The aims of this research are to determine the effect of the changes in the thrust, fuel mass flow rate, and thermal efficiency with changes of the flight-altitude (H) and the flight-Mach number (Ma). Then, the changing of the exergy efficiency and exergy destruction rate were investigated. The results show that between the different components of the engine in different flight circumstances, the highest exergy destruction occurred in the combustion chamber and the lowest exergy destruction occurred in the nozzle. Also, optimization with the objective function of finding optimum flight conditions to find the highest exergetic efficiency in the flight-Mach number of 1.2 to 2.2 and the flight altitude of 10,000 to 15,000 meters. The results of this optimization reported that the maximum exergetic efficiency happened to the conditions of H=11236 meters and Ma=1.944 with an amount of 32.64%.


  1. Choi, J. W. and Sung, H.-G., 2014. “Performance analysis of an aircraft gas turbine engine using particle swarm optimization”, International Journal of Aeronautical and Space Sciences, 15(4), pp: 434-443, Doi: 10.5139/IJASS.2014.15.4.434. 
  2. Meetham, G., 1981. The Development of Gas Turbines. Springer.
  3. Han, J.-C., 2018. “Advanced cooling in gas turbines 2016 Max Jakob memorial award paper”, Journal of Heat Transfer, 140(11), Doi: 10.1115/1.4039644.
  4. Liu, F. and Sirignano, W. A., 2001. “Turbojet and turbofan engine performance increases through turbine burners”, Journal of propulsion and power, 17(3), pp: 695-705, Doi: 10.2514/2.5797.
  5. Chen, H., Cai, C., Jiang, S. and Zhang, H., 2021. “Numerical modeling on installed performance of turbofan engine with inlet ejector”, Aerospace Science and Technology, 112, p: 106590, Doi: 10.1016/j.ast.2021.106590.
  6. Lee, J. J., 2010. “Can we accelerate the improvement of energy efficiency in aircraft systems?”, Energy conversion and management, 51(1), pp: 189-196, Doi: 10.1016/j.enconman.2009.09.011.
  7. Rosen, M. A., 2002. “Assessing energy technologies and environmental impacts with the principles of thermodynamics”, Applied Energy, 72(1), pp: 427-441, Doi: 10.1016/S0306-2619(02)00004-1.
  8. Rosen, M. A. and Dincer, I., 2003. “Exergoeconomic analysis of power plants operating on various fuels”, Applied Thermal Engineering, 23(6), pp: 643-658, Doi: 10.1016/S1359-4311(02)00244-2.
  9. Rai, S., Chand, P. and Sharma, S. P., 2016. “Investigation of an Offset Finned Solar Air Heater Based on Energy and Exergy Performance”, Iranian (Iranica) Journal of Energy and Environment, 7(3), pp: 212-220, Doi: 10.5829/idosi.ijee.2016.07.03.01.
  10. Emyat, B. G., 2020. “Energy and Exergy Assessment and Heat Recovery on Rotary Kiln of Cement Plant for Cooling Effect Production by Using Vapor Absorption Refrigeration System”, Iranian (Iranica) Journal of Energy and Environment, 11(2), pp: 109-115, Doi: 10.5829/ijee.2020.11.02.03.
  11. Alibeigi, M., Farahani, S. D. and Hezaveh, S. A., 2021. “Effects of coupled heat sources in a triple power cycle: thermodynamic, economics and environment analysis and optimization”, International Journal of Energy and Environmental Engineering, Doi: 10.1007/s40095-021-00442-9.
  12. hezaveh, s. a., farahani, s. d. and Alibeigi, M., 2020. “Technical-economic Analysis of the Organic Rankine Cycle with Different Energy Sources”, Journal of Solar Energy Research, 5(1), pp: 362-373, Doi: 10.22059/jser.2020.300111.1148.
  13. Sabzehali, M., Alibeigi, M. and Davoodabadi Farahani, S., 2021. “Comparison of New concept Engine Based On Micro Gas Turbine with XU7/L3 Internal Combustion Engine”, ASE, 11(2), pp: 3591-3601,
  14. Vadlamudi, T. C., Kommineni, R., Katuru, B. P. and Injeti, N. K. N., 2018. “Influence of Different Steam Cooling Techniques for High Pressure Turbine Blades on the Performance of Gas Turbine”, Iranian (Iranica) Journal of Energy and Environment, 9(3), pp: 168-175, Doi: 10.5829/ijee.2018.09.03.03.
  15. Turgut, E. T., Karakoc, T. H. and Hepbasli, A., 2007. “Exergetic analysis of an aircraft turbofan engine”, International Journal of Energy Research, 31(14), pp: 1383-1397, Doi: 10.1002/er.1310.
  16. Coban, K., Colpan, C. O. and Karakoc, T. H., 2017. “Application of thermodynamic laws on a military helicopter engine”, Energy, 140, pp: 1427-1436, Doi: 10.1016/
  17. Turan, O., 2012. “Effect of reference altitudes for a turbofan engine with the aid of specific–exergy based method”, International Journal of Exergy, 11(2), pp: 252-270, Doi: 10.1504/IJEX.2012.049738.
  18. Turan, Ö. and Aydın, H., 2016. “Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications”, Energy, 115, pp: 914-923, Doi: 10.1016/
  19. Etele, J. and Rosen, M. A., 2001. “Sensitivity of exergy efficiencies of aerospace engines to reference environment selection”, Exergy, An International Journal, 1(2), pp: 91-99, Doi: 10.1016/S1164-0235(01)00014-0.
  20. Balli, O., Ekici, S. and Karakoc, T. H., 2021. “Tf33 Turbofan Engine In Every Respect: Performance, Environmental And Sustainability Assessment”, Environmental Progress & Sustainable Energy, Doi: 10.1002/ep.13578.
  21. Rahman, M., Ibrahim, T. K. and Abdalla, A. N., 2011. “Thermodynamic performance analysis of gas-turbine power-plant”, International journal of physical sciences, 6(14), pp: 3539-3550, Doi: 10.5897/IJPS11.272.
  22. Balli, O., Aras, H., Aras, N. and Hepbasli, A., 2008. “Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE)”, International Journal of Exergy, 5(5-6), pp: 567-581, Doi: 10.1504/IJEX.2008.020826.
  23. Balli, O. and Hepbasli, A., 2013. “Energetic and exergetic analyses of T56 turboprop engine”, Energy conversion and management, 73, pp: 106-120, Doi: 10.1016/j.enconman.2013.04.014.
  24. Balli, O., 2017. “Advanced exergy analyses of an aircraft turboprop engine (TPE)”, Energy, 124, pp: 599-612, Doi: 10.1016/
  25. Hashmi, M. B., Abd Majid, M. A. and Lemma, T. A., 2020. “Combined effect of inlet air cooling and fouling on performance of variable geometry industrial gas turbines”, Alexandria Engineering Journal, Doi: 10.1016/j.aej.2020.04.050.
  26. Santos, A. P. and Andrade, C. R., 2012. “Analysis of gas turbine performance with inlet air cooling techniques applied to Brazilian sites”, Journal of Aerospace Technology and Management, 4, pp: 341-353, Doi: 10.5028/jatm.2012.04032012.
  27. Tsoutsanis, E. and Meskin, N., 2019. “Dynamic performance simulation and control of gas turbines used for hybrid gas/wind energy applications”, Applied Thermal Engineering, 147, pp: 122-142, Doi: 10.1016/j.applthermaleng.2018.09.031.
  28. Abd. Rahman, R. and Sepehri, N., 2017. “Design and experimental evaluation of a dynamical adaptive backstepping-sliding mode control scheme for positioning of an antagonistically paired pneumatic artificial muscles driven actuating system”, International Journal of Control, 90(2), pp: 249-274, Doi: 10.1080/00207179.2016.1176255.
  29. Adolfo, D., Bertini, D., Gamannossi, A. and Carcasci, C., 2017. “Thermodynamic Analysis of an Aircraft Engine to estimate performance and emissions at LTO cycle”, Energy Procedia, 126, pp: 915-922, Doi: 10.1016/j.egypro.2017.08.162.
  30. Seyam, S., Dincer, I. and Agelin-Chaab, M., 2021. “Investigation of Two Hybrid Aircraft Propulsion and Powering Systems Using Alternative Fuels”, Energy, p: 121037, Doi: 10.1016/
  31. Gupta, K., Rehman, A. and Sarviya, R., 2010. “Evaluation of soya bio-diesel as a gas turbine fuel”, Iranica Journal of Energy & Environment, 1(3), pp: 205-210,
  32. Osigwe, E. O., Gad-Briggs, A., Nikolaidis, T., Jafari, S., Sethi, B. and Pilidis, P., 2021. “Thermodynamic Performance and Creep Life Assessment Comparing Hydrogen-and Jet-Fueled Turbofan Aero Engine”, Applied Sciences, 11(9), pp: 3873, Doi: 10.3390/app11093873.
  33. Turan, O. and Aydin, H., 2016. “Exergy-based Sustainability Analysis of a Low-bypass Turbofan Engine: A Case Study for JT8D”, Energy Procedia, 95, pp: 499-506, Doi: 10.1016/j.egypro.2016.09.075.
  34. Balli, O., 2019. “Advanced Exergy Analysis of a Turbofan Engine (TFE): Splitting Exergy Destruction into Unavoidable/Avoidable and Endogenous/Exogenous”, International Journal of Turbo and Jet Engines, 36, p: 305, Doi: 10.1515/tjj-2016-0074.
  35. Khan, A., Farooq, M., Nawaz, R., Ayaz, M. and Islam, S., 2021. “Comparative Study of Plane Poiseuille Flow of Non-isothermal Couple Stress Fluid of Reynold Viscosity Model using Optimal Homotopy Asymptotic Method and New Iterative Method”, Journal of Applied and Computational Mechanics, 7(2), pp: 404-414, Doi: 10.22055/jacm.2020.34964.2522.
  36. Kurzke, J., GasTurb 12: A program to calculate design and off-design performance of gas turbines. User’s manual. 2012, GasTurb, Aachen, Germany.
  37. Tai, V., See, P. and Mares, C., 2014. “Optimisation of Energy and Exergy of Turbofan Engines Using Genetic Algorithms”, International Journal of Sustainable Aviation, 1, Doi: 10.1504/IJSA.2014.062866.
  38. “F−14 TF30−P−414 TO F110−GE−400 engine upgrade technical comparison”,
  39. Rao, R. V., Savsani, V. J. and Vakharia, D. P., 2011. “Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems”, Computer-Aided Design, 43(3), pp: 303-315, Doi: 10.1016/j.cad.2010.12.015.
  40. Deb, K., 2000. “An efficient constraint handling method for genetic algorithms”, Computer methods in applied mechanics and engineering, 186(2-4), pp: 311-338, Doi: 10.1016/S0045-7825(99)00389-8.
  41. Ramoji, S. K. and Kumar, B. J., 2014. “Optimal Economical sizing of a PV-Wind Hybrid Energy System using Genetic Algorithm and Teaching Learning Based Optimization”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(2), pp: 7352-7367.