Post-Covid-19 Energy Transition Strategies: Even Reaching 100% Renewable in Ecuador by 2055 is not Enough to Face Climate Change Issue

Document Type : COVID-19


Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, PO. Box 15875-4413, Tehran, Iran


The pandemic scenario caused by Covid-19 generated negative impacts. Covid-19 has made it clear that our daily lives depend to a high degree on access to energy. Therefore, now more than ever, it is necessary to promote new activities such as local food production, but also local energy capture. This article is an attempt to expose and quantify the benefits of a renewable energy transition in Ecuador post Covid-19 and post-oil. The generation, consumption, and reserves of oil in Ecuador were characterized, and the concept of energy transition was applied to evaluate the possibilities of integration of renewables, the progressive exit of thermal power plants, and future energy strategies. The year 2015 was taken as a basis and it was determined that energy use was 154.0 TWh / year, which corresponds to an end-user of approximately 147 TWh / year. The objective was to reduce this end-use demand to 80.0 TWh/year by 2055 through the integration of renewables and energy efficiency, for which 5 transition phases were planned until a 100% renewable system was obtained. It is concluded that the energy transition in Ecuador is technically possible and economically viable, without giving up the energy well-being that we currently enjoy. However, results show that even 100% renewable is not enough to face climate change.


  1. Alves, M., Segurado, R. and Costa, M., 2020. On the road to 100% renewable energy systems in isolated islands. Energy, 198, pp.117321. Doi:1016/
  2. Esteban, M., Portugal-Pereira, J., Mclellan, B.C., Bricker, J., Farzaneh, H., Djalilova, N., Ishihara, K.N., Takagi, H. and Roeber, V., 2018. 100% renewable energy system in Japan: Smoothening and ancillary services. Applied energy, 224, pp.698-707. Doi:10.1016/j.apenergy.2018.04.067
  3. Child, M., Bogdanov, D. and Breyer, C., 2018. The role of storage technologies for the transition to a 100% renewable energy system in Europe. Energy Procedia, 155, pp.44-60. Doi:10.1016/j.egypro.2018.11.067
  4. Hansen, K., Mathiesen, B.V. and Skov, I.R., 2019. Full energy system transition towards 100% renewable energy in Germany in 2050. Renewable and Sustainable Energy Reviews, 102, pp.1-13. Doi:10.1016/j.rser.2018.11.038
  5. Uyar, T.S. and Beşikci, D., 2017. Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. International Journal of Hydrogen Energy, 42(4), pp.2453-2456. Doi:10.3390/en13153883
  6. Müller-Kraenner, S., 2008. Energy security: re-measuring the world. Earthscan. Doi:10.3390/en13153883
  7. Unnerstall, T., 2017. Conclusion from an International Perspective. In: The German Energy Transition. Springer, Berlin, Heidelberg. Doi:10.1007/978-3-662-54329-0_22
  8. Pinto, N.N. ed., 2013. Technologies for Urban and Spatial Planning: Virtual Cities and Territories: Virtual Cities and Territories (Vol. 2326, No. 6139). IGI Global. Doi:10.1016/j.esd.2013.02.001
  9. Sørensen, B., 2016. Energy, Resources and Welfare: Exploration of Social Frameworks for Sustainable Development. Academic Press. Doi:10.1109/ICRERA47325.2016.8997114
  10. Sørensen, B. and Spazzafumo, G., 2018. Hydrogen and fuel cells: emerging technologies and applications. Academic Press. Doi:10.1016/j.renene.2018.03
  11. Robalino-López, A., Mena-Nieto, A. and García-Ramos, J.E., 2014. System dynamics modelling for renewable energy and CO2 emissions: A case study of Ecuador. Energy for Sustainable Development, 20, pp.11-20. Doi:10.1016/j.esd.2014.02.001
  12. Villacreses, G., Gaona, G., Martínez-Gómez, J. and Jijón, D.J., 2017. Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable energy, 109, pp. 275-286. Doi:10.1016/j.renene.2017.03
  13. Norouzi, N., Fani, M. 2021. The seventh line: a scenario planning strategic framework for Iranian 7th energy progress plan by 2020-2025, Journal of Energy Management and Technology, 5(3), pp. 43-53. Doi:10.22109/jemt.2020.234795.1243
  14. Norouzi, N., Fani, M. 2021. The prioritization and feasibility study over renewable technologies using fuzzy logic: A case study for Takestan plains, Journal of Energy Management and Technology, 5(2), pp.12-22. Doi:10.22109/jemt.2020.219626.1230
  15. Icaza, D., Borge-Diez, D. and Galindo, S.P., 2021. Proposal of 100% renewable energy production for the City of Cuenca-Ecuador by 2050. Renewable Energy, 170, 1324-1341. Doi:10.1016/j.renene.2021.02.067
  16. Cevallos-Sierra, J. and Ramos-Martin, J., 2018. Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews, 81, pp.1154-1165. Doi:10.1016/j.rser.2017.08.015
  17. Hidrovo, A.B., Uche, J. and Martínez-Gracia, A., 2017. Accounting for GHG net reservoir emissions of hydropower in Ecuador. Renewable Energy, 112, pp.209-221. Doi:10.1016/j.renene.2017.05.047
  18. Peláez-Samaniego, M.R., Garcia-Perez, M., Cortez, L.A.B., Oscullo, J. and Olmedo, G., 2007. Energy sector in Ecuador: Current status. Energy Policy, 35(8), pp.4177-4189. Doi:10.1016/j.enpol.2007.02.025
  19. Icaza, D. and Borge-Diez, D., 2019, November. Potential Sources of Renewable Energy for the Energy Supply in the City of Cuenca-Ecuador with Towards a Smart Grid. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), 603-610. Doi:10.1109/ICRERA47325.2019.8997114
  20. Chilán, J.C.H., Torresb, S.G.P., Machucac, B.I.F., Cordova, A.J.T., Pérez, C.A.M. and Gámez, M.R., 2018. Social impact of renewable energy sources in the province of Loja: Ecuador. International journal of physical sciences and engineering, 2(1), pp.13-25. Doi:10.1016/j.renene.2018.03
  21. Villacreses, G., Gaona, G., Martínez-Gómez, J. and Jijón, D.J., 2017. Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable energy, 109, pp.275-286. Doi:10.1016/j.renene.2017.03.041
  22. González, J.E., Coronel Espinoza, B., Quevedo Tumailli, V., Uvidia Cabadiana, H., Oliva, D., Morón, C.J. and Robles Campo, M., 2021. Biomass Potential and Kinetics of Drying Model of Piptocoma discolor (pigüe) as a Source of Renewable Energy Source in Ecuador. Enfoque UTE, 12(1), pp.74-90. Doi:10.29019/enfoqueute.695   
  23. Barzola, J., Espinoza, M. and Cabrera, F., 2016. Analysis of hybrid solar/wind/diesel renewable energy system for off-grid rural electrification. International Journal of Renewable Energy Research, 6(3), pp.1146-1152. Doi:10.1016/j.esd.2016.02.001
  24. Arroyo M, F.R. and Miguel, L.J., 2020. The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador. Energies, 13(15), pp.3883. Doi:10.3390/en13153883
  25. Arévalo, P., Cano, A. and Jurado, F., 2020. Comparative study of two new energy control systems based on PEMFC for a hybrid tramway in Ecuador. International Journal of Hydrogen Energy, 45(46), pp. 25357-25377. Doi:10.1016/j.ijhydene.2020.06.212
  26. Barzola-Monteses, J. and Espinoza-Andaluz, M., 2019. Performance Analysis of Hybrid Solar/H2/Battery Renewable Energy System for Residential Electrification. Energy Procedia, 158, pp.9-14. Doi:10.1016/j.egypro.2019.01.024
  27. Martínez, J., Martí-Herrero, J., Villacís, S., Riofrio, A.J. and Vaca, D., 2017. Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador. Energy Policy, 107, pp.182-187. Doi:10.1016/j.enpol.2017.04.033
  28. Nova, F.M., Icaza, D., Lojano, A., Herrera, L.C., Herrera, M.C. and Flores, C., 2019, November. Projection of a Renewable Energy System for the Observatory of Extraterrestrial Life in Ecuador and Peru. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), pp.815-820. Doi:10.1109/ICRERA47325.2019.8996797
  29. Soria, R., Caiza, G., Cartuche, N., López-Villada, J. and Ordoñez, F., 2020, Market potential of linear Fresnel collectors for solar heat industrial process in Latin-America-a case study in Ecuador, AIP Conference Proceedings 2303, pp.120003. Doi:10.1063/5.0028503
  30. Albarracin, G., 2017. Urban form and ecological footprint: Urban form and ecological footprint: A morphological analysis for harnessing solar energy in the suburbs of Cuenca, Ecuador. Energy Procedia, 115, pp.332-343. Doi:10.1016/j.egypro.2017.05.030
  31. Barbosa, L.D.S.N.S., Bogdanov, D., Vainikka, P. and Breyer, C., 2017. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America. PloS one, 12(3), pp.e Doi:10.1371/journal.pone.0173820
  32. Jacobs, D., Marzolf, N., Paredes, J.R., Rickerson, W., Flynn, H., Becker-Birck, C. and Solano-Peralta, M., 2013. Analysis of renewable energy incentives in the Latin America and Caribbean region: The feed-in tariff case. Energy Policy, 60, pp.601-610. Doi:10.1016/j.enpol.2012.09.024
  33. Mite-León, M. and Barzola-Monteses, J., 2018. Statistical model for the forecast of hydropower production in Ecuador. International Journal of Renewable Energy Research, 10(2), pp.1130-1137. Doi:10.1016/j.renene.2018.03.041
  34. Lund, H. and Mathiesen, B.V., 2009. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy, 34(5), pp.524-531. Doi:10.1016/
  35. Mathiesen, B.V., Lund, H. and Karlsson, K., 2011. 100% Renewable energy systems, climate mitigation and economic growth. Applied energy, 88(2), pp.488-501. Doi:10.1016/j.apenergy.2010.03.001
  36. Connolly, D., Lund, H., Mathiesen, B.V. and Leahy, M., 2011. The first step towards a 100% renewable energy-system for Ireland. Applied Energy, 88(2), pp.502-507. Doi:10.1016/j.apenergy.2010.03.006
  37. Hansen, K., Breyer, C. and Lund, H., 2019. Status and perspectives on 100% renewable energy systems. Energy, 175, pp.471-480. Doi:10.1016/
  38. Ćosić, B., Krajačić, G. and Duić, N., 2012. A 100% renewable energy system in the year 2050: The case of Macedonia. Energy, 48(1), pp.80-87. Doi:10.1016/
  39. García-Olivares, A., Solé, J. and Osychenko, O., 2018. Transportation in a 100% renewable energy system. Energy Conversion and Management, 158, pp.266-285. Doi:10.1016/j.enconman.2017.12.053
  40. Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P.A., Möller, B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K. and Hvelplund, F.K., 2015. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied Energy, 145, pp.139-154. Doi:10.1016/j.apenergy.2015.01.075
  41. Norouzi, N., 2021. Post‐COVID‐19 and globalization of oil and natural gas trade: Challenges, opportunities, lessons, regulations, and strategies. International Journal of Energy Research, 45(10), pp.14338-14356. Doi:10.1002/er.6762
  42. Norouzi, N. and Ataei, E., 2021. Covid-19 Crisis and Environmental law: Opportunities and challenges. Hasanuddin Law Review, 7(1), pp.46-60. Doi:10.20956/halrev.v7i1.2772
  43. Norouzi, N., Khanmohammadi, H.U. and Ataei, E., 2021. The Law in the Face of the COVID-19 Pandemic: Early Lessons from Uruguay. Hasanuddin Law Review, 7(2), pp.75-88. Doi:10.20956/halrev.v7i2.2827
  44. Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B.M. and Hannegan, B., 2017. Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy. IEEE Power and energy magazine, 15(2), pp.61-73. Doi:10.1109/MPE.2016.2637122
  45. Norouzi, N., de Rubens, G.Z., Choupanpiesheh, S. and Enevoldsen, P., 2020. When pandemics impact economies and climate change: exploring the impacts of COVID-19 on oil and electricity demand in China. Energy Research & Social Science, 68, pp.101654. Doi:10.1016/j.erss.2020.101654
  46. Norouzi, N., Zarazua de Rubens, G.Z., Enevoldsen, P. and Behzadi Forough, A., 2021. The impact of COVID‐19 on the electricity sector in Spain: An econometric approach based on prices. International Journal of Energy Research, 45(4), pp.6320-6332. Doi:10.1002/er.6259
  47. Norouzi, N. and Fani, M., 2020. The impacts of the novel corona virus on the oil and electricity demand in Iran and China. Journal of Energy Management and Technology, 4(4), pp.36-48. Doi:10.22109/jemt.2020.222593.1232
  48. Norouzi, N. and Kalantari, G., 2020. The sun food-water-energy nexus governance model a case study for Iran. Water-Energy Nexus, 3, pp.72-80. Doi:10.1016/j.wen.2020.05.005
  49. Lund, H., 2009. Renewable energy systems: the choice and modeling of 100% renewable solutions. Academic Press. Doi:10.1016/j.apenergy.2009.03.006
  50. Connolly, D., Lund, H. and Mathiesen, B.V., 2016. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renewable and Sustainable Energy Reviews, 60, pp.1634-1653. Doi:10.1016/j.rser.2016.02.025
  51. Norouzi, N. 2021. Assessment of Technological Path of Hydrogen Energy Industry Development: A Review, Iranian (Iranica) Journal of Energy & Environment, 12(4), pp.1-12. Doi:10.5829/ijee.2021.12.04.01
  52. Behzadi Forough, A., Norouzi, N., Fani, M. 2021. More Secure Iranian Energy System: A Markal Based Energy Security Model for Iranian Energy Demand-side. Iranian (Iranica) Journal of Energy & Environment, 12(2), pp.100-108. Doi:10.5829/ijee.2021.12.02.01
  53. Heshmat, S., Hashemi Monfared, S., Yousefi Kebria, D., Banihashemi, S., 2020. Identification of Characteristics Influencing Wave Height and Current Velocity in MIKE Model for Simulation of Wind-induced Ocean Currents and Waves in Southeast of Caspian Sea. Iranian (Iranica) Journal of Energy & Environment, 11(4), pp.330-338. Doi:10.5829/ijee.2020.11.04.11
  54. Nemati, A. 2020. Three-dimensional Numerical Study of the Performance of a Small Combined Savonius-Darrieus Vertical Wind Turbine, Iranian (Iranica) Journal of Energy & Environment, 11(2), pp.163-169. Doi:10.5829/ijee.2020.11.02.11
  55. Tamoor, M., Sagir, M., Abbas, G., Ans Zaka, M., ZakaUllah, P. Design, 2020. Construction and Production of Small Scale Energy Generation Plant using Indigenous Resources. Iranian (Iranica) Journal of Energy & Environment, 11(4), pp.308-319. Doi:10.5829/ijee.2020.11.04.09
  56. Belay Kassa, A. 2019. Current Status, Future Potential and Barriers for Renewable Energy Development in Ethiopia, Iranian (Iranica) Journal of Energy & Environment, 10(4), pp.269-274. Doi:10.5829/ijee.2019.10.04.07