Document Type : Review paper

Authors

1 Unite de Recherche en Energies Renouvelables en Milieu Saharien, Centre de Développement des Energies Renouvelables, Adrar, Algeria

2 Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bakr Belkaid University, Tlemcen, Algeria

3 Department of Technology, University Centre of Naama, Naama, Algeria

Abstract

An objective analysis of the wind atlas map of the region of Adrar (Algeria) at a height of 10 meters above ground is essential, in order to classify these velocities according to the Pacific Northwest Laboratory (PNL) classification, and then to develop the separation velocity map. The present work is conducted in the region of Adrar to determine the monthly, seasonal, and annual energy generated by the Whisper200 wind turbine by using the Rayleigh distribution and the wind data recorded every three hours from January 1st, 1961 to December 31st, 2018. From the obtained findings, the northeast region of Adrar is a suitable region for wind applications. The surface of this area is equal to 16587 km², where two sites are located (Kaberten and Aougroute). However, the second PNL class is divided into seven zones. The wind speed in this region (2nd PNL class) is favourable for the setup of isolated wind turbines or hybrid systems. The following cities are located in this region (2nd PNL class): Adrar, Aoulef, Bordj Baji Mokthar, Timaiaouine, Regagne, and Timimoune.

Keywords

1.   Ibrahim, S. M. A. 1984. “Energy in the Arab world.” Energy, 9(3), pp.217–238. https://doi.org/10.1016/0360-5442(84)90109-9
2.   Bensaid, H. 1985. “The Algerian programme on wind energy.” Proceeding of WEAC, pp.21–27.
3.   Benmemdejahed, M., and Mouhadjer, S. 2016. “Evaluation of wind energy cost and site selection for a wind-farm in the south of Algeria.” AIP Conference Proceedings, 1758. https://doi.org/10.1063/1.4959397
4.   Merzouk, N. K. 2006. Evaluation of the eoliem energy deposit contribution to the determination of the vertical profile of the wind speed in Algeria. Doctoral dissertation, Université de Tlemcen. Retrieved from http://dspace.univ-tlemcen.dz/bitstream/112/4379/1/KASBADJI.pdf
5.   Chellali, F., Khellaf, A., Belouchrani, A., and Recioui, A. 2011. “A contribution in the actualization of wind map of Algeria.” Renewable and Sustainable Energy Reviews, 15(2), pp.993–1002. https://doi.org/10.1016/j.rser.2010.11.025
6.   Boudia, S. M. 2013. Optimisation de l’évaluation temporelle du gisement énergétique éolien par simulation numérique et contribution à la réactualisation de l’atlas des vents en Algérie. Doctoral dissertation, Université de Tlemcen-Abou Bekr Belkaid.
7.   Daaou Nedjari, H., Haddouche, S. K., Balehouane, A., and Guerri, O. 2018. “Optimal windy sites in Algeria: Potential and perspectives.” Energy, 147, pp.1240–1255. https://doi.org/10.1016/j.energy.2017.12.046
8.   Petit-Maire, N., Commelin, D., Fabre, J., and Fontugne, M. 1990. “First evidence for Holocene rainfall in the Tanezrouft hyperdesert and its margins.” Palaeogeography, Palaeoclimatology, Palaeoecology, 79(3–4), pp.333–338. https://doi.org/10.1016/0031-0182(90)90026-4
9.   Peel, M. C., Finlayson, B. L., and McMahon, T. A. 2007. “Updated world map of the Köppen-Geiger climate classification.” Hydrology and Earth System Sciences, 11(5), pp.1633–1644. https://doi.org/10.5194/hess-11-1633-2007
10. Boudia, S. M., Benmansour, A., Ghellai, N., Benmedjahed, M., and Tabet Hellal, M. A. 2012. “Monthly and Seasonal Assessment of Wind Energy Potential in Mechria Region, Occidental Highlands of Algeria.” International Journal of Green Energy, 9(3), pp.243–255. https://doi.org/10.1080/15435075.2011.621482
11. Elliott, D. L., Holladay, C. G., Barchet, W. R., Foote, H. P., and Sandusky, W. F. 2003. “Wind energy resource atlas of the United States.” Choice Reviews Online, 41(04). https://doi.org/10.5860/CHOICE.41-2192
12. Celik, A. N. 2004. “A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey.” Renewable Energy, 29(4), pp.593–604. https://doi.org/10.1016/j.renene.2003.07.002
13. Akpinar, E. K., and Akpinar, S. 2004. “Statistical analysis of wind energy potential on the basis of the Weibull and Rayleigh distributions for Agin-Elazig, Turkey.” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(8), pp.557–565. https://doi.org/10.1243/0957650042584357
14. Tuller, S. E., and Brett, A. C. 1985. “The goodness of fit of the weibull and rayleigh distributions to the distributions of observed wind speeds in a topographically diverse area.” Journal of Climatology, 5(1), pp.79–94. https://doi.org/10.1002/joc.3370050107
15. Jowder, F. A. L. 2006. “Weibull and Rayleigh Distribution Functions of Wind Speeds in Kingdom of Bahrain.” Wind Engineering, 30(5), pp.439–445. https://doi.org/10.1260/030952406779502650
16. Pishgar-Komleh, S. H., Keyhani, A., and Sefeedpari, P. 2015. “Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran).” Renewable and Sustainable Energy Reviews, 42, pp.313–322. https://doi.org/10.1016/j.rser.2014.10.028
17. Bidaoui, H., Abbassi, I. El, Bouardi, A. El, and Darcherif, A. 2019. “Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco.” Procedia Manufacturing, 32, pp.786–793. https://doi.org/10.1016/j.promfg.2019.02.286
18. Mathew, S. 2006. “Book Review: Wind Energy Conversion Systems: Wind Energy — Fundamentals, Resource Analysis and Economics.” Wind Engineering, 30(4), pp.357–360. https://doi.org/10.1260/030952406779295426
19. Justus, C. G., and Mikhail, A. 1976. “Height variation of wind speed and wind distributions statistics.” Geophysical Research Letters, 3(5), pp.261–264. https://doi.org/10.1029/GL003i005p00261
20. Éolienne terrestre WHISPER 200 - 1000W, 12 A, (12, 24, 48V configurable) avec contrôleur, https://www.elysun-store.fr/eolienne-terrestre-whisper-200-1000w-12-a-12-24-48v-configurable.html. (n.d.).
21. Abderrahim, A., Ghellai, N., Bouzid, Z., and Menni, Y. 2019. “Wind Energy Resource Assessment in South Western of Algeria.” Mathematical Modelling of Engineering Problems, 6(2), pp.157–162. https://doi.org/10.18280/mmep.060201
22. Maouedj, R., Bouchouicha, K., and Boumediene, B. 2011. “Evaluation of the wind energy potential in the Saharan sites of Algeria.” In 2011 10th International Conference on Environment and Electrical Engineering (pp. 1–4). IEEE. https://doi.org/10.1109/EEEIC.2011.5874582
23. Maouedj, R., Barbaoui, B., Benmedjahed, M., Mammeri, A., Saba, D., Ghaitaoui, T., and Laribi, S. 2018. “Wind Energy Resource Assessment at three Sites in the Algerian Highlands.” In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1–6). IEEE. https://doi.org/10.1109/IRSEC.2018.8702275
24. Rachid, M., Said, D., and Boumediene, B. 2012. “Wind Characteristics Analysis for Selected Site in Algeria.” International Journal of Computer Applications, 56(5), pp.39–46. https://doi.org/10.5120/8890-2896
25. Benmedjahed, M., and Maouedj, R. 2018. “Wind Power Assessment In Algeria; Methods Development.” In 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICWEAA.2018.8605049
26. Benmedjahed, M., 2014. “Choix du site et optimisation du dimensionnement d’une installation éolienne dans le nord Algérien et son impact sur l’environnement”, Doctoral dissertation.
27. Benmedjahed, M. 2015. “Wind Potential Assessment of Ain Salah in Algeria; Calculation of the Cost Energy.” International Journal of Energy and Power Engineering, 4(2), pp.38. https://doi.org/10.11648/j.ijepe.20150402.14
28. Benmedjahed, M., Maouedj, R., and Mouhadjer, S. 2017. “Wind Potential Assessment of M’sila in Algerian Highlands Regions; Modeling of Wind Turbine Noise.” Energy Procedia, 119, pp.642–649. https://doi.org/10.1016/j.egypro.2017.07.090
29. Benmedjahed, M., Ghellai, N., and Benmansour, A. 2012. “Wind Potential Assessment of Three Coastal Sites in Algeria: Calculation and Modeling of Wind Turbine Noise using Matlab.” International Journal of Computer Applications, 56(2), pp.20–25. https://doi.org/10.5120/8864-2827
30. Benmedjahed, M., Maouedj, R., and Mouhadjer, S. 2020. “Wind energy resource assessment of desert sites in Algeria: energy and reduction of CO2 emissions.” International Journal of Applied Power Engineering (IJAPE), 9(1), pp.22. https://doi.org/10.11591/ijape.v9.i1.pp22-28
31. Benmedjahed, M., Ghellai, N., Bouzid, Z., and Chiali, A. 2015. “Temporal Assessment of Wind Energy Resource in ‘Adrar’ (South of Algeria); Calculation and Modeling of Wind Turbine Noise” (pp. 33–42). Springer, Cham. https://doi.org/10.1007/978-3-319-16901-9_5
32. Lahouaria Boudaoud, M. B. 2015. “Temporal Assessment of Wind Energy Resource in Algerian Desert Sites: Calculation and Modelling of Wind Noise.” Journal of Fundamentals of Renewable Energy and Applications, 05(03). https://doi.org/10.4172/2090-4541.1000160
33. Wu, Y. S., and Smolinski, P. 2000. “A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule.” Computer Methods in Applied Mechanics and Engineering, 187(3–4), pp.641–660. https://doi.org/10.1016/S0045-7825(99)00343-6
34. Tuck, E. O. 1967. “A Simple ‘‘Filon-trapezoidal” rule.” Mathematics of Computation, 21(98), pp.239–239. https://doi.org/10.1090/S0025-5718-67-99892-4
35. Rahman, Q. I., and Schmeisser, G. 1990. “Characterization of the speed of convergence of the trapezoidal rule.” Numerische Mathematik, 57(1), pp.123–138. https://doi.org/10.1007/BF01386402
36. Trefethen, L. N., and Weideman, J. A. C. 2014. “The Exponentially Convergent Trapezoidal Rule.” SIAM Review, 56(3), pp.385–458. https://doi.org/10.1137/130932132
37. Waldvogel, J. 2010. “Towards a General Error Theory of the Trapezoidal Rule” (pp. 267–282). https://doi.org/10.1007/978-1-4419-6594-3_17