Assessment of Adsorption Capacity of Thiol-functionalized Titanate Nanotubes for Removal of Cu(II) and Ni(II) from Aqueous Solution via Static Adsorption

Document Type : Original Article


1 Department of Chemical Engineering, Advanced Membrane Research Center, Babol Noshirvani University of Technology, Babol, Iran

2 Department of Green Chemistry, Lappeenranta University of Technology, Lappeenranta, Finland

3 Department of Analytical Chemistry, University of Mazandaran, Babolsar, Iran

4 Department of Textile Engineering, Amirkabir University of Technology (Polytechnic Tehran), Tehran, Iran

5 Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran


The significance of toxic metals pollution treatment has become incrementally manifested as an important environmental issues in the recent years due to the urgent need to access healthy water and increase of the anthropogenic activities in water contamination. For efficient treatment of water contaminants, the selective and novel materials are always welcomed. In this study, the hydrothermally synthesized titanate nanotubes (TNT) were modified by the mercaptosilane modifier for the removal of Cu(II) and Ni(II) toxic contaminants. The modified TNT adsorbent (TNT/Sil) was characterized in terms of the physicochemical aspects and then, the experiments for capturing metal cations were performed in batch mode. The modified adsorbent presented more affinity for the removal of Cu(II) than Ni(II).Theresults demonstrated thatthe experimental data were highly fitted to the Freundlich isotherm model and the maximum uptake capacities for Cu(II) and Ni(II) were found to be 53.77 and 45.29 mg g-1, respectively. In addition, endothermic nature of the adsorption process was predicted by the thermodynamic study as well as the pseudo-second order model that was corresponded to the kinetic data. Considering these achievements and due to the surface hydroxyl and thiol functional groups, TNT/Sil adsorbent could be effective and promising material in the purification of wastewaters, contaminated with toxic metal cations.


1.     Zhao, R., Li, X. and Wang, C.  2018. 'Electrospun Filters for Heavy Metals Removal',  Filtering Media by Electrospinning: Springer, pp. 85-113.
2.     Wang, X. and Hsiao, B. S.  2016. 'Electrospun nanofiber membranes', Current Opinion in Chemical Engineering, 12, pp. 62-81.
3.     Gautam, R. K., Chattopadhyaya, M. C. and Sharma, S. K.  2013. 'Biosorption of heavy metals: recent trends and challenges', Wastewater Reuse and Management, pp. 305-322.
4.     Fu, F. and Wang, Q.  2011. 'Removal of heavy metal ions from wastewaters: a review', Journal of environmental Management, 92(3), pp. 407-418.
5.     G. Georgopoulos, A. Roy, MJ Yonone-Lioy, R. E. Opiekun and Lioy, P. J.  2001. 'Environmental copper: its dynamics and human exposure issues', Journal of Toxicology and Environmental Health Part B: Critical Reviews, 4(4), pp. 341-394.
6.     Hezarjaribi, M., Bakeri, G., Sillanpää, M., Chaichi, M. and Akbari, S.  2020. 'Novel adsorptive membrane through embedding thiol-functionalized hydrous manganese oxide into PVC electrospun nanofiber for dynamic removal of Cu (II) and Ni (II) ions from aqueous solution', Journal of Water Process Engineering, 37, pp. 101401.
7.     Anjum, M., Miandad, R., Waqas, M., Gehany, F. and Barakat, M.  2019. 'Remediation of wastewater using various nano-materials', Arabian Journal of Chemistry, 12(8), pp. 4897-4919.
8.     Alguacil, F. J., Lopez, F. A. and Garcia-Diaz, I.  2016. 'Extracting metals from aqueous solutions using Ti-based nanostructures: a review', Desalination and Water Treatment, 57(37), pp. 17603-17615.
9.     Linghu, W., Sun, Y., Yang, H., Chang, K., Sheng, G., Hayat, T., Alharbi, N. S. and Ma, J.  2017. 'Macroscopic and spectroscopic exploration on the removal performance of titanate nanotubes towards Zn (II)', Journal of Molecular Liquids, 244, pp. 146-153.
10.   Li, X., Liu, W. and Ni, J.  2015. 'Short-cut synthesis of tri-titanate nanotubes  using  nano -anatase:  Mechanism  and  application  as an  excellent  adsorbent',  Microporous  and  Mesoporous Materials, 213, pp. 40-47.
11.   Sheng, G., Ye, L., Li, Y., Dong, H., Li, H., Gao, X. and Huang, Y. 2014. 'EXAFS study of the interfacial interaction of nickel (II) on titanate nanotubes: role of contact time, pH and humic substances', Chemical Engineering Journal, 248, pp. 71-78.
12.   Wang, T., Liu, W., Xiong, L., Xu, N. and Ni, J.  2013. 'Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes', Chemical Engineering Journal, 215-216, pp. 366-374.
13.   Zheng, T., Wang, T., Ma, R., Liu, W., Cui, F. and Sun, W.  2019. 'Influences of isolated fractions of natural organic matter on adsorption of Cu(II) by titanate nanotubes', Science of The Total Environment, 650, pp. 1412-1418.
14.   Mallakpour, S. and Madani, M.  2015. 'A review of current coupling agents for modification of metal oxide nanoparticles', Progress in Organic Coatings, 86, pp. 194-207.
15.   Dobrzyńska, J., Dobrowolski, R., Olchowski, R., Zięba, E. and Barczak, M.  2019. 'Palladium adsorption and preconcentration onto thiol-and amine-functionalized mesoporous silicas with respect to analytical applications', Microporous and Mesoporous Materials, 274, pp. 127-137.
16.   Zhu, K., Duan, Y., Wang, F., Gao, P., Jia, H., Ma, C. and Wang, C.  2017. 'Silane-modified halloysite/Fe3O4 nanocomposites: Simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption', Chemical Engineering Journal, 311, pp. 236-246.
17.   Awual, M. R., Hasan, M. M., Iqbal, J., Islam, A., Islam, M. A., Asiri, A. M. and Rahman, M. M.  2020. 'Naked-eye lead (II) capturing from contaminated water using innovative large-pore facial composite materials', Microchemical Journal, 154, pp. 104585.
18.   Awual, M. R., Hasan, M. M., Iqbal, J., Islam, M. A., Islam, A., Khandaker, S., Asiri, A. M. and Rahman, M. M.  2020. 'Ligand based sustainable composite material for sensitive nickel (II) capturing in aqueous media', Journal of Environmental Chemical Engineering, 8(1), pp. 103591.
19.   Awual, M. R., Hasan, M. M., Khaleque, M. A. and Sheikh, M. C.  2016. 'Treatment of copper (II) containing wastewater by a newly developed ligand based facial conjugate materials', Chemical Engineering Journal, 288(15), pp. 368-376.
20.   Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.  1998. 'Formation of titanium oxide nanotube', Langmuir, 14(12), pp. 3160-3163.
21.   Zavala,  M.  Á.  L.,  Morales,  S.  A.  L.  and  Ávila-Santos,  M.  2017.   'Synthesis  of stable  TiO2 nanotubes: effect of hydrothermal treatment,  acid  washing  and  annealing  temperature',  Heliyon, 3(11),  pp. e00456.
22.   Salmasi, M., Fatemi, S. and Mortazavi, Y.  2016. 'Fabrication of promoted TiO2 nanotubes with superior catalytic activity against TiO2 nanoparticles as the catalyst of oxi-desulfurization process', Journal of Industrial and Engineering Chemistry, 39, pp. 66-76.
23.   Wu, J., Ling, L., Xie, J., Ma, G. and Wang, B.  2014. 'Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction', Chemical Physics Letters, 591, pp. 227-232.
24.   Xia, Z., Baird, L., Zimmerman, N. and Yeager, M.  2017. 'Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers', Applied Surface Science, 416, pp. 565-573.
25.   Abbasizadeh, S., Keshtkar, A. R. and Mousavian, M. A.  2013. 'Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution', Chemical Engineering Journal, 220, pp. 161-171.
26.   Bach, L. G., Islam, M. R., Hong, S.-S., Hwang, H. S., Kim, H. G. and Lim, K. T.  2012. 'Synthesis and Characterization of Poly (oxyethylene methacrylate) Coated TiO2 Nanoparticles via Surface Thiol-Lactam Initiated Radical Polymerization', Molecular Crystals and Liquid Crystals, 565(1), pp. 88-97.
27.   Liu, N., Chen, X., Zhang, J. and Schwank, J. W.  2014. 'A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications', Catalysis Today, 225, pp. 34-51.
28.   Freundlich, H.  1906. 'Over the adsorption in solution', Journal of Physical Chemistry, 57(385471), pp. 1100-1107.
29.   Langmuir, I.  1918. 'The adsorption of gases on plane surfaces of glass, mica and platinum', Journal of the American Chemical Society, 40(9), pp. 1361-1403.
30.   Lagergren, S. K.  1898. 'About the theory of so-called adsorption of soluble substances', Sven. Vetenskapsakad. Handingarl, 24, pp. 1-39.
31.   Ho, Y.-S. and McKay, G.  1999. 'Pseudo-second order model for sorption processes', Process Biochemistry, 34(5), pp. 451-465.
32.   Liu, W., Chen, H., Borthwick, A. G., Han, Y. and Ni, J.  2013. 'Mutual promotion mechanism for adsorption of coexisting Cr (III) and Cr (VI) onto titanate nanotubes', Chemical Engineering Journal, 232, pp. 228-236.
33.   Wang, L., Shi, Y., Yao, D., Pan, H., Hou, H., Chen, J. and Crittenden, J. C.  2019. 'Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study', Chemical Engineering Journal, 366, pp. 569-576.
34.   Liu, Y.  2009. 'Is the free energy change of adsorption correctly calculated?', Journal of Chemical and Engineering Data, 54(7), pp. 1981-1985.
35.   Liu, S.-S., Lee, C.-K., Chen, H.-C., Wang, C.-C. and Juang, L.-C.  2009. 'Application of titanate nanotubes for Cu (II) ions adsorptive removal from aqueous solution', Chemical Engineering Journal, 147(2-3), pp. 188-193.
36.   Sharaf El-Deen, S., Ammar, N. S. and Jamil, T. S.  2016. 'Adsorption behavior of Co (II) and Ni (II) from aqueous solutions onto titanate nanotubes', Fullerenes, Nanotubes and Carbon Nanostructures, 24(7), pp. 455-466.