Mechanical, Morphological Properties and Chemical Resistance of Filled Rattan Wastes Powder Epoxy Composites

Document Type : Original Article


Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo, Nigeria


Fibre content effects on mechanical, surface morphology and chemical resistance of epoxy/rattan fibre composite was investigated. By analysis of scanning electron microscopy (SEM), mechanical and chemical examinations. SEM shows the rattan fibre had improved facial adhesion and a fairly uniform distribution of fibre in the matrix. Similar result were observed for flexural and tensile strengths with gradual increase in strengths with filler loading. Mechanical properties improved with increasing fibre loading, peaking at 25 wt % content. The best tensile and impact strength was obtained at 25 wt % filler with a value of 19.271Mpa and 18.876 J/m. There was a 4.48 % increase in hardness obtained at 15 wt %, 6.55 % increase in hardness at 20 wt. %, while 7.46 % increase in hardness was obtained at 25 wt % representing the highest hardness for individual fibre wt % considered. The flexural strength obtained for the samples presented increased as fibre content increased, while the best flexural strength result of 27.542 Mpa was observed at 25 wt. % fibre. The rattan - epoxy composite’s weight reduced greatly after testing in 10% HCl, NaOCl, and NaOH solution. Theresult for immersing in H2O2 solution showed negligible effects and hence, a small reduction in weight loss.


1.    Kvien, I., & Oksman, K., 2007, Orientation of cellulose nanowhiskers in polyvinyl alcohol, Applied Physics A: Materials Science and Processing, 87(4): 641–643.
2.    Begum, K., & Islam, M. A., 2013, Natural fiber as a substitute to synthetic fiber in polymer composites: a review, Research Journal of Engineering Sciences, 2(3): 46–53.
3.    Young, H. H., Seong, O. H., Cho, D., & Kim, H. Il, 2008, Dynamic mechanical properties of natural fiber/polymer biocomposites: The effect of fiber treatment with electron beam, Macromolecular Research, 16(3): 253–260.
4.    Wambua, P., Ivens, J., & Verpoest, I., 2003, Natural fibres: Can they replace glass in fibre reinforced plastics?, Composites Science and Technology, 63(9): 1259–1264.
5.    Alberto, M., 2013, Introduction of Fibre-Reinforced Polymers − Polymers and Composites: Concepts, Properties and Processes, In Fiber Reinforced Polymers - The Technology Applied for Concrete Repair. InTech.
6.    Satyanarayana, K. G., Guimarães, J. L., & Wypych, F., 2007, Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications, Composites Part A: Applied Science and Manufacturing, 38(7): 1694–1709.
7.    Nayak, S. K., Tripahy, S. S., Rout, J., & Mohanty, A. K., 2000, Coir-Polyester Composite: Effect on fibre surface treatment on mechanical properties of composite, International Plastics Engineering and Technology, 4: 79–86.
8.    Ray, D., Sarkar, B. K., Rana, A. K., & Bose, N. R., 2001, Effect of alkali treated jute fibres on composite properties, Bulletin of Materials Science, 24(2): 129–135.
9.    Sreekala, M. S., Kumaran, M. G., Joseph, S., Jacob, M., & Thomas, S., 2000, Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance, Applied Composite Materials, 7(5–6): 295–329.
10. Paul, A., Joseph, K., & Thomas, S., 1997, Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers, Composites Science and Technology, 57(1): 67–79.
11. Kalia, S., Kaith, B. S., & Kaur, I., 2009, Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review, Polymer Engineering and Science, 49(7): 1253–1272.
12. Firdaus, F. E., & Dachyar, M., 2018, Fiber Surface Modification; Characterization of Rattan Fiber Reinforced Composite, International Journal of Engineering & Technology, 7(3.7): 113–116.
13. Shang, L., Jiang, Z., Liu, X., Tian, G., Ma, J., & Shumin, Y., 2016, Effect of Modification with Methyl Methacrylate on the Mechanical Properties of Plectocomia kerrana Rattan, 11(1): 2071–2082.
14. Lucas, E., & Dahunsi, B., 2004, Characteristics of three western nigerian rattan species in relation to their utilisation as construction material, Journal of bamboo and Rattan, 3(1): 45–56.
15. Francis, B., Thomas, S., Thomas, S. P., Ramaswamy, R., & Lakshmana Rao, V., 2006, Diglycidyl ether of bisphenol-A epoxy resin-polyether sulfone/polyether sulfone ether ketone blends: Phase morphology, fracture toughness and thermo-mechanical properties, Colloid and Polymer Science, 285(1): 83–93.
16. Miracle, D. B., & Donaldson, S. L., 2001, Introduction to Composites, ASM handbook, 21: 3–18.
17. Guo, B., Jia, D., & Cai, C., 2004, Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites, European Polymer Journal, 40(8): 1743–1748.
18. Liu, W., Hoa, S. V., & Pugh, M., 2005, Organoclay-modified high performance epoxy nanocomposites, Composites Science and Technology, 65(2): 307–316.
19. Ratna, D., Becker, O., Krishnamurthy, R., Simon, G. P., & Varley, R. J., 2003, Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate, Polymer, 44(24): 7449–7457.
20. Isik, I., Yilmazer, U., & Bayram, G., 2003, Impact modified epoxy/montmorillonite nanocomposites: Synthesis and characterization, Polymer, 44(20): 6371–6377.
21. Rachchh, N. V., Ujeniya, P. S., & Misra, R. K., 2014, Mechanical Characterisation of Rattan Fibre Polyester Composite, Procedia Materials Science, 6: 1396–1404.
22. Ma, Y., Wu, S., Tong, J., Zhao, X., Zhuang, J., Liu, Y., & Qi, H., 2018, Tribological and mechanical behaviours of rattan-fibre-reinforced friction materials under dry sliding conditions, Materials Research Express, 5(3): 035101.
23. Nikmatin, S., Syafiuddin, A., Hong Kueh, A. B., & Maddu, A., 2017, Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles, Journal of Applied Research and Technology, 15(4): 386–395.
24. Balakrishna, N. S., Ismail, H., & Othman, N., 2014, Polypropylene/Rattan Powder/Kaolin Hybrid Composites: Processing, Mechanical and Thermal Properties, Polymer - Plastics Technology and Engineering, 53(5): 451–458.
25. Nikmatin, S., Syafiuddin, A., Beng Hong Kueh, A., & Aris Purwanto, Y., 2015, Effects of nanoparticle filler on thermo-physical properties of rattan powder-filled polypropylene composites, Jurnal Teknologi, 77: 2180–3722. Retrieved from
26. Penn, L. S., & Chiao, T. T., 1982, Epoxy Resins, In Handbook of Composites (pp. 57–88). Boston, MA: Springer US.
27. Preet Singh, J. I., Dhawan, V., Singh, S., & Jangid, K., 2017, Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites, In Materials Today: Proceedings (Vol. 4), pp. 2793–2799.
28. Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., & El Bouari, A., 2017, The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite, South African Journal of Chemical Engineering, 23: 116–123.
29. Obiukwu, O. O., & Igboekwe, J. E., 2020, Investigations on the Thermal and Dynamic-Mechanical Properties of Rattan Cane Fibre (Calamus Deeratus) Filled Epoxy Composites, International Journal of Engineering Research & Technology, 9(2): 416–420. Retrieved from
30. Sun, Z., Zhang, L., Liang, D., Xiao, W., & Lin, J., 2017, Mechanical and Thermal Properties of PLA Biocomposites Reinforced by Coir Fibers, International Journal of Polymer Science, 2017: 1–8.
31. Tran, T. P. T., Bénézet, J. C., & Bergeret, A., 2014, Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks, Industrial Crops and Products, 58: 111–124.
32. Oladele, I. O., Ibrahim, I. O., Adediran, A. A., Akinwekomi, A. D., Adetula, Y. V., & Olayanju, T. M. A., 2020, Modified palm kernel shell fiber/particulate cassava peel hybrid reinforced epoxy composites, Results in Materials, 5: 100053.
33. Dawit, J. B., Regassa, Y., & Lemu, H. G., 2020, Property characterization of acacia tortilis for natural fiber reinforced polymer composite, Results in Materials, 5: 100054.
34. Obiukwu, O., Opara, I., & Udeani, H., 2016, Study on the mechanical properties of palm kernel fibre reinforced epoxy and poly-vinyl alcohol (PVA) composite material, International Journal of Engineering and Technologies, 7: 68–77. Retrieved from
35. Erdogan, S., & Huner, U., 2018, Physical and Mechanical Properties of PP Composites based on Different Types of Lignocellulosic Fillers, Journal Wuhan University of Technology, Materials Science Edition, 33(6): 1298–1307.
36. Ghali, L., Msahli, S., Zidi, M., & Sakli, F., 2011, Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites, Advances in Materials Physics and Chemistry, 01(03): 78–85.
37. Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H., 2018, Mechanical Properties of Rice Husk Biochar Reinforced High Density Polyethylene Composites, Polymers, 10(286): 1–10.
38. Oladele, I. O., Ibrahim, I. O., Akinwekomi, A. D., & Talabi, S. I., 2019, Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO 3 reinforced polypropylene composites, Polymer Testing, 76: 192–198.
39. Tufan, M., Akbaş, S., Güleç, T., Taşçioğlu, C., & Alma, M. H., 2016, Mechanical, thermal, morphological properties and decay resistance of filled hazelnut husk polymer composites, Maderas: Ciencia y Tecnologia, 17(4): 865–874.
40. Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T., 2014, Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Composites Part A: Applied Science and Manufacturing, 63: 76–84.
41. Adewuyi, A. P., Otukoya, A. A., Olaniyi, O. A., & Olafusi, O. S., 2015, Comparative Studies of Steel, Bamboo and Rattan as Reinforcing Bars in Concrete: Tensile and Flexural Characteristics, Open Journal of Civil Engineering, 05(02): 228–238.
42. Bismarck, A., Mishra, S., & Lampke, T., 2005, Plant fibers as reinforcement for green composites, In Natural Fibers, Biopolymers, and Biocomposites (pp. 37–108). CRC Press.
43. Gu, H., 2009, Tensile behaviours of the coir fibre and related composites after NaOH treatment, Materials and Design, 30(9): 3931–3934.
44. Zhang, Q., Li, Y., Cai, H., Lin, X., Yi, W., & Zhang, J., 2019, Properties comparison of high density polyethylene composites filled with three kinds of shell fibers, Results in Physics, 12: 1542–1546.
45. Ganiu Agbabiaka, O., Oluwole Oladele, I., & Daramola, O. O., 2015, Mechanical and Water Absorption Properties of Alkaline Treated Coconut (cocosnucifera) and Sponge (acanthus montanus) Fibers Reinforced Polypropylene Composites, Columbia International Publishing American Journal of Materials Science & Technology, 4(2): 84–92.
46. Opara, H., Igwe, I., & Ewulonu, C., 2016, Mechanical and Chemical Resistance Properties of High Density Polyethylene Filled with Corncob and Coconut Fiber, International Research Journal of Pure and Applied Chemistry, 11(2): 1–10.
47. Krisdianto, K., Jasni, J., & Tutiana, T., 2018, Anatomical Properties of Nine Indigenous Rattan Species of Jambi, Indonesia, Indonesian Journal of Forestry Research, 5(2): 147–161.
48. Tejas V. Shah, & Dilip V. Vasava, 2019, A glimpse of biodegradable polymers and their biomedical applications, e-Polymers, 19(1): 385–410.