Document Type : Original Article

Authors

Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo, Nigeria

Abstract

Fibre content effects on mechanical, surface morphology and chemical resistance of epoxy/rattan fibre composite was investigated. By analysis of scanning electron microscopy (SEM), mechanical and chemical examinations. SEM shows the rattan fibre had improved facial adhesion and a fairly uniform distribution of fibre in the matrix. Similar result were observed for flexural and tensile strengths with gradual increase in strengths with filler loading. Mechanical properties improved with increasing fibre loading, peaking at 25 wt % content. The best tensile and impact strength was obtained at 25 wt % filler with a value of 19.271Mpa and 18.876 J/m. There was a 4.48 % increase in hardness obtained at 15 wt %, 6.55 % increase in hardness at 20 wt. %, while 7.46 % increase in hardness was obtained at 25 wt % representing the highest hardness for individual fibre wt % considered. The flexural strength obtained for the samples presented increased as fibre content increased, while the best flexural strength result of 27.542 Mpa was observed at 25 wt. % fibre. The rattan - epoxy composite’s weight reduced greatly after testing in 10% HCl, NaOCl, and NaOH solution. Theresult for immersing in H2O2 solution showed negligible effects and hence, a small reduction in weight loss.

Keywords

1.    Kvien, I., & Oksman, K., 2007, Orientation of cellulose nanowhiskers in polyvinyl alcohol, Applied Physics A: Materials Science and Processing, 87(4): 641–643. https://doi.org/10.1007/s00339-007-3882-3
2.    Begum, K., & Islam, M. A., 2013, Natural fiber as a substitute to synthetic fiber in polymer composites: a review, Research Journal of Engineering Sciences, 2(3): 46–53.
3.    Young, H. H., Seong, O. H., Cho, D., & Kim, H. Il, 2008, Dynamic mechanical properties of natural fiber/polymer biocomposites: The effect of fiber treatment with electron beam, Macromolecular Research, 16(3): 253–260. https://doi.org/10.1007/bf03218861
4.    Wambua, P., Ivens, J., & Verpoest, I., 2003, Natural fibres: Can they replace glass in fibre reinforced plastics?, Composites Science and Technology, 63(9): 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4
5.    Alberto, M., 2013, Introduction of Fibre-Reinforced Polymers − Polymers and Composites: Concepts, Properties and Processes, In Fiber Reinforced Polymers - The Technology Applied for Concrete Repair. InTech. https://doi.org/10.5772/54629
6.    Satyanarayana, K. G., Guimarães, J. L., & Wypych, F., 2007, Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications, Composites Part A: Applied Science and Manufacturing, 38(7): 1694–1709. https://doi.org/10.1016/j.compositesa.2007.02.006
7.    Nayak, S. K., Tripahy, S. S., Rout, J., & Mohanty, A. K., 2000, Coir-Polyester Composite: Effect on fibre surface treatment on mechanical properties of composite, International Plastics Engineering and Technology, 4: 79–86.
8.    Ray, D., Sarkar, B. K., Rana, A. K., & Bose, N. R., 2001, Effect of alkali treated jute fibres on composite properties, Bulletin of Materials Science, 24(2): 129–135. https://doi.org/10.1007/BF02710089
9.    Sreekala, M. S., Kumaran, M. G., Joseph, S., Jacob, M., & Thomas, S., 2000, Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance, Applied Composite Materials, 7(5–6): 295–329. https://doi.org/10.1023/A:1026534006291
10. Paul, A., Joseph, K., & Thomas, S., 1997, Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers, Composites Science and Technology, 57(1): 67–79. https://doi.org/10.1016/S0266-3538(96)00109-1
11. Kalia, S., Kaith, B. S., & Kaur, I., 2009, Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review, Polymer Engineering and Science, 49(7): 1253–1272. https://doi.org/10.1002/pen.21328
12. Firdaus, F. E., & Dachyar, M., 2018, Fiber Surface Modification; Characterization of Rattan Fiber Reinforced Composite, International Journal of Engineering & Technology, 7(3.7): 113–116. https://doi.org/10.14419/ijet.v7i3.7.16250
13. Shang, L., Jiang, Z., Liu, X., Tian, G., Ma, J., & Shumin, Y., 2016, Effect of Modification with Methyl Methacrylate on the Mechanical Properties of Plectocomia kerrana Rattan, 11(1): 2071–2082. https://doi.org/10.15376/biores.11.1.2071-2082
14. Lucas, E., & Dahunsi, B., 2004, Characteristics of three western nigerian rattan species in relation to their utilisation as construction material, Journal of bamboo and Rattan, 3(1): 45–56. https://doi.org/10.1163/156915904772875635
15. Francis, B., Thomas, S., Thomas, S. P., Ramaswamy, R., & Lakshmana Rao, V., 2006, Diglycidyl ether of bisphenol-A epoxy resin-polyether sulfone/polyether sulfone ether ketone blends: Phase morphology, fracture toughness and thermo-mechanical properties, Colloid and Polymer Science, 285(1): 83–93. https://doi.org/10.1007/s00396-006-1537-0
16. Miracle, D. B., & Donaldson, S. L., 2001, Introduction to Composites, ASM handbook, 21: 3–18. https://doi.org/10.31399/asm.hb.v21.a0003350
17. Guo, B., Jia, D., & Cai, C., 2004, Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites, European Polymer Journal, 40(8): 1743–1748. https://doi.org/10.1016/j.eurpolymj.2004.03.027
18. Liu, W., Hoa, S. V., & Pugh, M., 2005, Organoclay-modified high performance epoxy nanocomposites, Composites Science and Technology, 65(2): 307–316. https://doi.org/10.1016/j.compscitech.2004.07.012
19. Ratna, D., Becker, O., Krishnamurthy, R., Simon, G. P., & Varley, R. J., 2003, Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate, Polymer, 44(24): 7449–7457. https://doi.org/10.1016/j.polymer.2003.08.035
20. Isik, I., Yilmazer, U., & Bayram, G., 2003, Impact modified epoxy/montmorillonite nanocomposites: Synthesis and characterization, Polymer, 44(20): 6371–6377. https://doi.org/10.1016/S0032-3861(03)00634-7
21. Rachchh, N. V., Ujeniya, P. S., & Misra, R. K., 2014, Mechanical Characterisation of Rattan Fibre Polyester Composite, Procedia Materials Science, 6: 1396–1404. https://doi.org/10.1016/j.mspro.2014.07.119
22. Ma, Y., Wu, S., Tong, J., Zhao, X., Zhuang, J., Liu, Y., & Qi, H., 2018, Tribological and mechanical behaviours of rattan-fibre-reinforced friction materials under dry sliding conditions, Materials Research Express, 5(3): 035101. https://doi.org/10.1088/2053-1591/aab4a7
23. Nikmatin, S., Syafiuddin, A., Hong Kueh, A. B., & Maddu, A., 2017, Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles, Journal of Applied Research and Technology, 15(4): 386–395. https://doi.org/10.1016/j.jart.2017.03.008
24. Balakrishna, N. S., Ismail, H., & Othman, N., 2014, Polypropylene/Rattan Powder/Kaolin Hybrid Composites: Processing, Mechanical and Thermal Properties, Polymer - Plastics Technology and Engineering, 53(5): 451–458. https://doi.org/10.1080/03602559.2013.844833
25. Nikmatin, S., Syafiuddin, A., Beng Hong Kueh, A., & Aris Purwanto, Y., 2015, Effects of nanoparticle filler on thermo-physical properties of rattan powder-filled polypropylene composites, Jurnal Teknologi, 77: 2180–3722. Retrieved from www.jurnalteknologi.utm.my
26. Penn, L. S., & Chiao, T. T., 1982, Epoxy Resins, In Handbook of Composites (pp. 57–88). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-7139-1_5
27. Preet Singh, J. I., Dhawan, V., Singh, S., & Jangid, K., 2017, Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites, In Materials Today: Proceedings (Vol. 4), pp. 2793–2799. https://doi.org/10.1016/j.matpr.2017.02.158
28. Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., & El Bouari, A., 2017, The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite, South African Journal of Chemical Engineering, 23: 116–123. https://doi.org/10.1016/j.sajce.2017.04.005
29. Obiukwu, O. O., & Igboekwe, J. E., 2020, Investigations on the Thermal and Dynamic-Mechanical Properties of Rattan Cane Fibre (Calamus Deeratus) Filled Epoxy Composites, International Journal of Engineering Research & Technology, 9(2): 416–420. Retrieved from www.ijert.org
30. Sun, Z., Zhang, L., Liang, D., Xiao, W., & Lin, J., 2017, Mechanical and Thermal Properties of PLA Biocomposites Reinforced by Coir Fibers, International Journal of Polymer Science, 2017: 1–8. https://doi.org/10.1155/2017/2178329
31. Tran, T. P. T., Bénézet, J. C., & Bergeret, A., 2014, Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks, Industrial Crops and Products, 58: 111–124. https://doi.org/10.1016/j.indcrop.2014.04.012
32. Oladele, I. O., Ibrahim, I. O., Adediran, A. A., Akinwekomi, A. D., Adetula, Y. V., & Olayanju, T. M. A., 2020, Modified palm kernel shell fiber/particulate cassava peel hybrid reinforced epoxy composites, Results in Materials, 5: 100053. https://doi.org/10.1016/j.rinma.2019.100053
33. Dawit, J. B., Regassa, Y., & Lemu, H. G., 2020, Property characterization of acacia tortilis for natural fiber reinforced polymer composite, Results in Materials, 5: 100054. https://doi.org/10.1016/j.rinma.2019.100054
34. Obiukwu, O., Opara, I., & Udeani, H., 2016, Study on the mechanical properties of palm kernel fibre reinforced epoxy and poly-vinyl alcohol (PVA) composite material, International Journal of Engineering and Technologies, 7: 68–77. Retrieved from https://doi.org/10.18052/www.scipress.com/IJET.7.68
35. Erdogan, S., & Huner, U., 2018, Physical and Mechanical Properties of PP Composites based on Different Types of Lignocellulosic Fillers, Journal Wuhan University of Technology, Materials Science Edition, 33(6): 1298–1307. https://doi.org/10.1007/s11595-018-1967-9
36. Ghali, L., Msahli, S., Zidi, M., & Sakli, F., 2011, Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites, Advances in Materials Physics and Chemistry, 01(03): 78–85. https://doi.org/10.4236/ampc.2011.13013
37. Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H., 2018, Mechanical Properties of Rice Husk Biochar Reinforced High Density Polyethylene Composites, Polymers, 10(286): 1–10. https://doi.org/10.3390/polym10030286
38. Oladele, I. O., Ibrahim, I. O., Akinwekomi, A. D., & Talabi, S. I., 2019, Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO 3 reinforced polypropylene composites, Polymer Testing, 76: 192–198. https://doi.org/10.1016/j.polymertesting.2019.03.021
39. Tufan, M., Akbaş, S., Güleç, T., Taşçioğlu, C., & Alma, M. H., 2016, Mechanical, thermal, morphological properties and decay resistance of filled hazelnut husk polymer composites, Maderas: Ciencia y Tecnologia, 17(4): 865–874. https://doi.org/10.4067/S0718-221X2015005000075
40. Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T., 2014, Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Composites Part A: Applied Science and Manufacturing, 63: 76–84. https://doi.org/10.1016/j.compositesa.2014.04.003
41. Adewuyi, A. P., Otukoya, A. A., Olaniyi, O. A., & Olafusi, O. S., 2015, Comparative Studies of Steel, Bamboo and Rattan as Reinforcing Bars in Concrete: Tensile and Flexural Characteristics, Open Journal of Civil Engineering, 05(02): 228–238. https://doi.org/10.4236/ojce.2015.52023
42. Bismarck, A., Mishra, S., & Lampke, T., 2005, Plant fibers as reinforcement for green composites, In Natural Fibers, Biopolymers, and Biocomposites (pp. 37–108). CRC Press. https://doi.org/10.1201/9780203508206.ch2
43. Gu, H., 2009, Tensile behaviours of the coir fibre and related composites after NaOH treatment, Materials and Design, 30(9): 3931–3934. https://doi.org/10.1016/j.matdes.2009.01.035
44. Zhang, Q., Li, Y., Cai, H., Lin, X., Yi, W., & Zhang, J., 2019, Properties comparison of high density polyethylene composites filled with three kinds of shell fibers, Results in Physics, 12: 1542–1546. https://doi.org/10.1016/j.rinp.2018.09.054
45. Ganiu Agbabiaka, O., Oluwole Oladele, I., & Daramola, O. O., 2015, Mechanical and Water Absorption Properties of Alkaline Treated Coconut (cocosnucifera) and Sponge (acanthus montanus) Fibers Reinforced Polypropylene Composites, Columbia International Publishing American Journal of Materials Science & Technology, 4(2): 84–92. https://doi.org/10.7726/ajmst.2015.1007
46. Opara, H., Igwe, I., & Ewulonu, C., 2016, Mechanical and Chemical Resistance Properties of High Density Polyethylene Filled with Corncob and Coconut Fiber, International Research Journal of Pure and Applied Chemistry, 11(2): 1–10. https://doi.org/10.9734/irjpac/2016/22902
47. Krisdianto, K., Jasni, J., & Tutiana, T., 2018, Anatomical Properties of Nine Indigenous Rattan Species of Jambi, Indonesia, Indonesian Journal of Forestry Research, 5(2): 147–161. https://doi.org/10.20886/ijfr.2018.5.2.147-161
48. Tejas V. Shah, & Dilip V. Vasava, 2019, A glimpse of biodegradable polymers and their biomedical applications, e-Polymers, 19(1): 385–410. https://doi.org/10.1515/epoly-2019-0041