Thermal, Abrasion and Dynamic-Mechanical Properties of Sugar Cane Bagasse Reinforced Polyester Resin Biocomposites

Document Type: Original Article

Authors

1 Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo, Nigeria

2 Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, Nigeria

Abstract

Biodegradable composites (SCB-PES) and a control sample were developed from polyester resin (PES) matrix and sugar cane bagasse (SCB) fibre at different matrix- fibre compositions using the compression technique. The effects of fibre content (9–54 wt%) and fibre treatment on thermal and dynamic mechanical properties of polyester / sugar cane bagasse fibre biocomposites were evaluated via thermogravimetric analysis (TGA) and DMA (Model: DMA 242 E Artemis) storage modulus (E1), loss modulus (E11), change in length of modulus (∆l), tan delta (E11/ E1) and glass transition temperature (Tg). The results showed that while the weight of the pure PES matrix showed a near complete disappearance between 400 –500 0C, the 9 % FW SCB-PES composite lost nearly 50% of its weight, in the same temperature region. The results which show that SCB-PES composites demonstrated acceptable thermal and abrasion properties portrays the effectiveness of SCB as reinforcement for PES matrix and the potential of the eco-friendly composites in the fabrication of utility materials for sustainable development. The weight loss (wt%) by the composites after 6 months soil burying test ranged from 22.24 -85.34 %.
 

Keywords


1.    Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H., 2018, Mechanical Properties of Rice Husk Biochar Reinforced High Density Polyethylene Composites, Polymers, 10(286): 1–10. https://doi.org/10.3390/polym10030286
2.    Chun Koay, S., Yeng Chan, M., Husseinsyah, S., Pang, M. M., & Ismail, A., 2017, Effect of eco-degradant on properties of low density polyethylene/corn stalk eco-composites, Journal of Engineering Science and Technology, 12(5): 1165 – 1177. Retrieved from https://www.researchgate.net/publication/316550199
3.    Avérous, L., & Pollet, E., 2012, Biodegradable Polymers - Environmental Silicate Nano-Biocomposites, Green Energy and Technology (Vol. 50, pp.13-39). Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_2
4.    Ramarao, M., Kiran, A. R., Mallikharjuna, G., Vali, B. J., & Mohanachari, J. V, 2018, Bamboo Fiber Based Polymer Composites Synthesis Mechanical Characterization, Journal of Advancement in Engineering and Technology, 6(1): 1–4. https://doi.org/10.5281/ZENODO.1163658
5.    Pawar, P. A., & Purwar, A. H., 2013, Bioderadable Polymers in Food Packaging, American Journal of Engineering Research, 2(5): 151–164. Retrieved from www.ajer.us
6.    North, E. J., & Halden, R. U., 2013, Plastics and environmental health: The road ahead, Reviews on Environmental Health, 28(1): 1–8.. https://doi.org/10.1515/reveh-2012-0030
7.    Razak, S. A., Ahmad Sharif, N. F., & Abdul Rahman, W. A. W., 2012, Biodegradable polymers and their bone applications: a review, International Journal of Basic & Applied Sciences, 12(1): 31–49. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.8617&rep=rep1&type=pdf
8.    Sahari, J., & Sapuan, S. M., 2011, Natural fibre reinforced biodegradable polymer composites, Reviews on Advanced Materials Science, 30(2): 166–174. Retrieved from http://wwwproxy.ipme.ru/e-journals/RAMS/no_23012/05_sahari.pdf
9.    Nair, L. S., & Laurencin, C. T., 2007, Biodegradable polymers as biomaterials, Progress in Polymer Science, 32(8-9): 762-798.. https://doi.org/10.1016/j.progpolymsci.2007.05.017
10. Bahari, K., Mitomo, H., Enjoji, T., Yoshii, F., & Makuuchi, K., 1998, Radiation crosslinked poly(butylene succinate) foam and its biodegradation, Polymer Degradation and Stability, 62(3): 551–557. https://doi.org/10.1016/S0141-3910(98)00041-X
11. Eggleston, G., & Lima, I., 2015, Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries, Sustainability, 7: 12209–12235. https://doi.org/10.3390/su70912209
12. Deepchand, K., 2005, Sugar Cane Bagasse Energy Cogeneration-Lessons from Mauritius , In Parliamentarian Forum on Energy Legislation and Sustainable Development, Cape Town, South Africa (pp. 1–18). Retrieved from https://www.un.org/esa/sustdev/sdissues/energy/op/parliamentarian_forum/deepchand_bagasse.pdf
13. Webber III, C. L., White Jr, P. M., Spaunhorst, D. J., & Petrie, E. C., 2017, Impact of Sugarcane Bagasse Ash as an Amendment on the Physical Properties, Nutrient Content and Seedling Growth of a Certified Organic Greenhouse Growing Media, Journal of Agricultural Science, 9(7): 1-11. https://doi.org/10.5539/jas.v9n7p1
14. Tahir, H., Sultan, M., Akhtar, N., Hameed, U., & Abid, T., 2016, Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution, Journal of Saudi Chemical Society, 20(S1): S115–S121. https://doi.org/10.1016/j.jscs.2012.09.007
15. Olutoge, F. A., Ofuyatan, O. M., AraromI, R., & Opaluwa, E., 2015, Strength Characteristics of Concrete Reinforced With Sugar Cane Bagasse Fibre, Journal of Mechanical and Civil Engineering, 12(3): 68–71. Retrieved from http://eprints.covenantuniversity.edu.ng/id/eprint/13285
16. Badruddin, N. A. B. M., 2012, Separation of oil and water using sugarcane bagasse, B. Sc. Thesis. Faculty of Chemical and Natural Resources Engineering. University Malaysia Pahang.
17. Tripathi, P., & Kumar, D., 2016, Study on Mechanical Behaviour of Sugarcane Bagasse Fiber Reinforced Polymer Matrix Composites, Journal of Physical Sciences, Engineering and Technology, 8(1): 34–42. https://doi.org/10.18090/samriddhi.v8i1.11410
18. Soccol, C. R., Vandenberghe, L. P. de S., Medeiros, A. B. P., Karp, S. G., Buckeridge, M., Ramos, L. P., Torres, F. A. G., 2010, Bioethanol from lignocelluloses: Status and perspectives in Brazil, Bioresource Technology, 101(13): 4820–4825. https://doi.org/10.1016/j.biortech.2009.11.067
19. Saiful Azhar, S., Suhardy, D., Kasim, F. H., & Saleh, M. N., 2007, Isolation and characterization of pulp from sugarcane bagasse and rice straw, Journal of Nuclear and Related Technology, 4: 109-113.
20. Opara, H., Igwe, I., & Ewulonu, C., 2016, Mechanical and Chemical Resistance Properties of High Density Polyethylene Filled with Corncob and Coconut Fiber, International Research Journal of Pure and Applied Chemistry, 11(2): 1–10. https://doi.org/10.9734/irjpac/2016/22902
21. Santana, I. L., Gonçalves, L. M., Ribeiro, J. J. S., Filho, J. R. M., & Cabral, A. A., 2011, Thermal behavior of direct resin composites: Glass transition temperature and initial degradation analyses, Revista Odonto Ciencia, 26(1): 50–55. https://doi.org/10.1590/S1980-65232011000100012
22. Samal, S. K., Mohanty, S., & Nayak, S. K., 2009, Polypropylene—Bamboo/Glass Fiber Hybrid Composites: Fabrication and Analysis of Mechanical, Morphological, Thermal, and Dynamic Mechanical Behavior, Journal of Reinforced Plastics and Composites, 28(22): 2729–2747. https://doi.org/10.1177/0731684408093451