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Abstract: Hollow concrete blocks are one of the widely used building elements of masonry structures in which
they are normally loaded under combined action of shear and compression. Accordingly and due to their
structural importance, the present study intends to numerically search for an optimum shape of such blocks.
The optimality index is selected to be the ratio of block’s failure strength to its weight, a non-dimensional
parameter, which needs to be maximized. The nonlinear analysis has been done using a homemade code written
based on the recently developed Lattice Discrete Particle Model (LDPM) for the meso-scale simulation of
concrete. This numerical approach accounts for the different aspects of concrete’s complex behavior such as
tensile fracturing, cohesive and frictional shearing and also its nonlinear compressive response. The model
parameters were calibrated against previously reported experimental data. Various two-core configurations for
the hollow blocks are examined, compared and discussed. 
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INTRODUCTION three dimensional finite element (FE) method [10,11].

Due to their light weight, ease of use and reasonable [12-14] leaded to acceptable estimation of failure
compressive performance, hollow concrete blocks are mechanisms of hollow masonry. Lu et al. [15] have used
widely used in masonry structures. Hence, its geometrical a nonlinear FE model to analyze slender unreinforced
design and mechanical properties are of significant masonry hollow walls under eccentric vertical loads
importance. Accordingly, many experimental and focusing on the cavity depth of the blocks. With the
numerical researches have been conducted in order to purpose of having shape simplicity and ease of
obtain logical relations between the structural manufacture, interlocking mortarless hollow block
characteristics of the blocks and their assemblages [1-3]. masonry systems have been developed [16,17].
More complicated works examined the effect of mortar Compressive strength correlation between the individual
properties  and   their  interface  with  the  blocks  [4,5]. block, prism and basic wall panel for this new type of load
The responses of hollow concrete blocks under various bearing interlocking blocks has been first obtained both
loading conditions including concentric and eccentric experimentally and numerically [18,19]. A few studies have
compression [6,7], flexure [8] and shear [9] have been also been also carried out on these structural units
empirically assessed. emphasizing on various loading conditions and effective

Alongside with experimental researches, several geometrical features. Del Coz Díaz et al. [20] have
efforts have been made so far in order to model numerically developed a new type of hollow block and
numerically the complex behavior of blocks, mortar and optimized its compressive behavior, weight and handling
interface joints. One of the main targets of these studies characteristics.
is to link the global behavior of walls and panels to the In this research, the lattice discrete particle model
properties of individual units and mortar. The most (LDPM) as a powerful numerical tool for the simulation of
widely-used numerical approaches is found to be the concrete has been employed. This approach let account

Utilizing  damage  models  for the constituent  material,



( ) ( )MQ+CQ+P Q F t= 

( ) ( ) ( )I Iu x u x-x xI I IA Q  = + × = 

( )
1 1

1 1

1 1

1 0 0 0
x 0 1 0 0

0 0 1 0
I

z z y y
A z z x x

y y x x

− − 
 = − − 
 − − 

Iranica J. Energy & Environ., 4 {(3) Geo-hazards and Civil Engineering)}: 243-250, 2013

244

for the different aspects of concrete nonlinear behavior
such  as tensile fracturing, cohesive and frictional
shearing and  also  its  nonlinear  compressive  response.
The model is calibrated and validated against available
test data. At first, a typical two-hole concrete block was
analyzed. Combined compressive-shear loads of various
ratios are applied. An optimality index is defined as the
ratio of resisted load to block weight. With the aim of
increasing the optimality index, three more samples were
created by adding horizontal diaphragm or rearranging the
holes. Finally, the blocks were compared from both
optimality index and failure mechanism points of view. (a)

Lattice Discrete Particle Model
Concrete Meso-structure Modelling: The LDPM is a
recently developed method for simulating the failure
behavior of discontinuous and heterogeneous materials,
such as concrete. The backbone of the current LDPM is
the innovative meso-scale approach known as the
Confinement Shear Lattice (CSL) Model introduced in
literatures [21- 23] and further improved [24]. The Lattice
Discrete Particle Model [25,26] combined CSL model with
the properties of Discrete Particle Models (DPM). In the
LDPM, aggregate content is identified using the mix
design and other input properties such as the cement (b)
content, aggregate content per unit volume and the
grading curve. Next, the aggregates of various sizes are Fig. 1: (a)   Random    aggregate    distribution  and (b)
randomly distributed inside the specimen, which helps three dimensional tetrahedron mesh of a typical
avoid a bias fracture propagation pattern in the concrete dogbone specimen (Mencarelli [26]) 
(Fig. 1a). Next, a three dimensional lattice structure
tessellates the volume and connects the  centers   of  the numerical stability condition is reserved by keeping the
adjacent  particles   resulting   in  a  tetrahedron  mesh time step below the permitted limit [23]. Solving the
(Fig. 1b). The connection between each aggregate is mentioned equation, the displacement field corresponding
called a strut. The constitutive laws of the model are to the six degrees of freedom for each aggregate center
formulated on a finite number of points, called the node is determined. Assuming a rigid connection between
computational points located between two neighboring nodes and computational points, the displacement jumps
aggregates. of the computational points will be obtained as stated in

Solution Procedure: The basic equation of motion in its
matrix form is (2)

(1)

Here, M is the mass matrix, P is the vector of internal rotation matrices of each computation point (I),
forces, C is the damping matrix (which is neglected here), respectively.
F is the given external load history and Q is the vector of
kinematic variables including the translations and
rotations. The equation is solved by the explicit method
using the central difference approximation in each of the
aggregate centers [23]. During the solution process, the

Eq. (2).

In  which  A  is  a  matrix  presented  in Eq. (3) and x,
u  and   are  the  coordinates,  displacement  and

(3)
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 are, the slope and the intersection of the
( ), asymptote with the

computational points.  axis. ,  and  are the mesoscale tensi le ,  c omp re ssiv e

(4)

Where  is the normal strain and  and  are theN L M

tangential strains. Where n is the unit vector directed

of the strut. Combining these normal and tangential
strains, the following important stain measures can be
introduced.

(5)

Where   and are   called   the   effective  and
coupling strains, respectively. The term  is the totalT

shear  strain. where  is a material property used to
control the elastic Poisson’s ratio. The constitutive
relation of the model is based on the following elastic
boundary.

(6)

)
defines the hardening-softening rates for the different
loading paths. where ( ) is the initial effective strength0

function and is defined as below:
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and high shear-low compressive behavior  at meso-level.

Calibration and Validation

concrete in the LDPM, one is  supposed to  de termine the
basic parameters of the model in such a way that the  f inal
responses of the numerical models  match the
corresponding experimental results. It needs to be noted
that for a successful calibration process,  one should  know
how the macroscopic responses of the concrete  are
connected to the meso-scale parameters  of the LDPM. In
this study, the calibration procedure proposed by
Mencarelli [25] has been combined with our  exper ience
with the LDPM and a simple reliable calibration procedure
is extracted. It requires the results of  the three tests  of
uniaxial compression, uniaxial tension and hydrosta tic
compression. In the following sections, the experimenta l
results of Barbosa et al. [3] are used to calibrate  the  mode l.
Next, the model is validated in the case  of  a hollow
concrete block made of the very same concrete . 

Calibration:In the first  calibration step, N

determined by matching the elastic responses of an
unconfined uniaxial compression simulation with those  of
the experiment. It  is important  to note that,  as  the fr ic t ion
coefficient between the loading plates and the specimens
is not  reported [3], this parameter  is reasonably assumed
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The form below is used for K(   ) :

perpendicular tangential unit normal. Also, l is the length
along the strut and l and m are the two mutually

Parameters K  and n  control the nonl inear

and K  and n  govern the nonlinear tensile ,  shear-tensile

Preliminaries:  In order to realist ically s imulate  a specif ic

 and E  are

 
n t

cn

to the intersection of the curves    ( ) and  ( ).
and shear strength, respectively. The term       corresponds

jumps can then be converted to the required strains at the  hyperbola, respectively. Also,
Constitutive Relations: The quantities of displacement Where µ and 
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(a) (b)
Fig. 2: Estimating parameters from the normalized hydrostatic curve. (a)  and (b) Kc c

(a) (b)
Fig. 3: Response of the cylindrical specimen under. (a)Indirect tension and (b) uniaxial compression.

equal to 0.1. The only parameter affecting the Poisson’s of the force-displacement curves. In the last step n  and 
ratio of the model is , thus its accurate value can simply are acquired through a trial and error process with the aim
be estimated. Furthermore, the identification of E  requires of reaching the correct peak value and post peak slope ofN

that the initial elastic slope of the stress-strain curve the uniaxial compressive curve. 
coincide with its experimental counterpart. At the end of Fig. 3b shows a comparison between the numerical
this stage we have the correct   values  of   and  E . and experimental results of the uniaxial compression test.N

They will be considered fixed parameters during the It should be noted that the tensile and compression tests
remaining steps of calibration. were performed on standard 100×200 mm cylindrical

The next stage is to identify  and K . It is found by specimens. The numerical models also correctly predictc c

Mencarelli [25] that these parameters decide the location crack patterns of the cylindrical specimens. A diagonal
of slope change on the normalized hydrostatic mode of cracking in addition to a slight crushing at the
compression curve and its initial inelastic slope, middle of the height of the compressive concrete cylinder
respectively. In the absence of appropriate experimental is observed which is the same as the cracks formed in the
data, Mencarelli [25] has suggested to use available experimental test (Fig. 3b) [28]. Also, for both tensile
information  from other experimental work, generally samples, a similar vertical crack is recorded which is due
driven out for the hydrostatic compressive behavior of to the direct loading conditions at the top and bottom of
concrete  material  [27]. Figs. 2a and 2b illustrate how the horizontal cylindrical specimen (Fig. 3a). At this stage,
these two parameters are estimated in a trial and error all the required parameters to model a desired type of
procedure. concrete are drawn out which will all be used as inputs for

Next, the tensile strength of meso-structure, ( ), the validation and further numerical analysis. Table 1t

should be found in a way that the tensile strength of the presents concrete meso-scale parameters together with
model matches the experimental value (Fig. 3a). Here, an their definitions and calibrated values. Table 2 compares
indirect tensile test (splitting test) is performed and the the numerically and empirically obtained properties of the
tensile strength is obtained by comparing the peak values concrete.

t s
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(a) (b)                                   (c)                 (d)
Fig. 4: Failure mechanism of the hollow block. (a) Indirect tension (LDPM), (b) indirect tension (experiment), (c) uniaxial

compression (LDPM), and (d) uniaxial compression (experiment).

Table 1: LDPM calibrated parameters
Calibrated

Parameter Definition Value
Parameter controlling the Poisson’s ratio 0.2

E Normal Young’s modulus of the meso-structure 50 (GPa)N

K Initial hardening modulus 18c

Compressive strength of the meso-structure 85 (MPa)
Tensile strength of the meso-structure 3.2 (MPa)t

n Parameter describing the behavior of softening slope 1.0t

Shear strength of the meso-structure 4.8 (MPa)s

Table 2: Final Mechanical properties of the concrete
Mechanical properties Experimental Numerical (LDPM)
Compressive Strength (MPa) 20 20
Strain at Failure 2707 2700
Modulus of Elasticity (MPa) 19407 19500
Tensile Strength (MPa) 2.2 2.2

Validation: In the validation phase, the experimental
results of Barbosa [28] for the compressive and tensile
loading of a specific type of hollow concrete block were
used. The ultimate forces resisted in the numerical model
under compression and indirect tensions were compared
with the experimental results. The peak value of the
numerical compressive load-displacement curve was equal
to 628.41 KN. Dividing this quantity to the cross-sectional
area of the block (306 cm ), the strength value of 20.5 MPa2

is obtained which is in good agreement with the
experimental value of 20.1 MPa. Furthermore, the failure
modes of  tested  specimens  were  also  investigated.
Figs. 4a and 4b compare the cracking pattern of the block
under indirect tension and Fig. 4.c and 4.d show that for
the specimen under compression, both in numerical and
experimental tests, respectively. In the indirect tension
test, due to the local loading, a vertical crack occurs
through the height of the block. However, because of the
confinement produced by the loading plates at the top
and bottom of block in compression test, diagonal crack
with  crushing  proceeded  in  the  sides   of   the   blocks.

Thus the failure mode is a combination of shear and
compression failures. As demostrated, the experimental
observations are satisfactorily predicted by the LDPM
simulations.

Block  Analysis:  The  detailed  numerical   analysis  of
the block units under different  loading  states  to which
are  prominently   subjected,  can  lead  to  a  reliable
design. The  types  of  loads  mostly  affecting  masonry
walls  include  gravity  forces  due   to   the   weight   of
the  walls  and  other  structural elements standing on
them, as well as lateral loads caused by earthquake or
wind. Here, to have a realistic observation of block
responses in masonry buildings, each block is subjected
to  simultaneous  gravity  and  shear  loads and is
analyzed using the computer code written based on the
Lattice   Discrete   Particle   Model.   In   each   loading
step of the LDPM analysis, a vertical displacement in
addition to a horizontal displacement is applied to the
nodes  of  the  top  surface  of  each block while the
bottom nodes of the block are constrained according to
the test conditions. In this work, four types of blocks were
analyzed under combined action of compression and
shear.  All  the  blocks  considered  in this  research  were
140×190×390 mm two-core samples. To optimize the
blocks behavior, initially a typical form of two-core block
is taken. In the second and third  blocks, a 30 mm
horizontal  diaphragm  has been inserted in the bottom
and  middle  of  the  blocks,  respectively.   An  extra
fourth sample is also studied in which the holes are
rearranged. All four types of blocks have equal cross
sectional areas but the weight of each block varies
according to its geometrical configuration. Table 3
presents the cross section, longitudinal section and
weight of each block.

Table 3: Analysed blocks
Block type 1 Block type 2 Block type 3 Block type 4

Cross Section

Longitudinal Section

Weight (N) 137 154 154 137
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RESULTS AND DISCUSSIONS 4 are similar. Still, block type 1, with its traditional form,

The simulations are carried out by applying
displacement-controlled compression while assuming
constant ratios (0, 0.5, 1, 2.5, 5 and 10) of lateral to axial
displacements. Considering a 2 mm compressive
displacement, shear displacements equal to 0, 1, 2, 5, 10
and 20 are applied to the blocks. Fig. 5a shows the peak
compressive load versus the peak shear load resisted by
each block. It is obvious that block type 2 with the
highest curve and block type 1 with the lowest curve have
the best and worst compressive resistance under
combined effect of shear and compression, respectively.
It can also be concluded from the curves in Fig. 5a that,
among block types 3 and 4, the former behaves relatively
better for lower shear loads; however, as the share of
shear increases, block type 3 proves its superiority.

The above comparisons are merely based on the pure
strength; however, the blocks used in any load bearing
structure, should have the least possible weight due to
structural  and  handling requirements. Hence, the
optimum option should be selected according to
simultaneous attention to both the strength and weight.
A non-dimensional variable called the optimality index
(OI), is calculated as introduced below: 

(9)

The curves of Fig. 5b depicts the optimality index of
blocks versus the displacement ratio (shear to
compression) applied to each specimen. According to the
results, block type 4 which no added diaphragm gives the
best response in shear to compression ratios of less than
4. This means that in such loading conditions, the
increasing effect of a horizontal diaphragm on the weight
is more than that on the strength. For the ratio greater
than 4 the responses of the three blocks of types 2, 3 and

owns the worst effective strength in any shear-
compression combinations.

In order to have a more precise comparison between
the responses of blocks, their failure modes should also
be taken into consideration. Observing the exact crack
patterns, their directions and the amount of damage
caused in the webs, shells or face-shell connections of
each block, we will come to a complete conclusion for the
strong and weak points. For this purpose, the graphical
outputs that show the failure patterns of the analyzed
blocks are generated by a post-processing code written
for the Lattice Discrete Particle Model. In this code, each
aggregate with a specified grout volume surrounding the
aggregate is considered as a rigid cell. Each rigid cell is
connected to the adjacent rigid cells of the concrete
material through connection points (Fig. 6). The average
strain in each of these connection points is calculated
according to the effective strains of the computational
points. Considering the average strains in each
connection point, the rotations and displacements of each
particle and the final deformed and cracked shape of the
concrete specimen are visualized. Fig. 7 shows these
graphical results.

As  shown,  a  diagonal  crack  is  observed  on  the
face-shell of all blocks. Block type 1 has more damaged
and crushed areas than others,  especially  on  the  top
surface, which confirm its worst load resistance capacity.
The presence of a horizontal diaphragm in block types 2
and  3  prevents  continuous  crack  propagations.
Suitable block types may be produced by changing the
thickness or shape of the diaphragm inserted. It is
interesting  that, for block type 4, the presence of two
thick  internal  walls, compared to the three thinner
internal walls of other samples, increases the effect of
confinement and thus improves its optimality index.
Another important advantage of using block type 4, apart
from its optimality, is that no additional plate is required
in its construction. 

(a) (b)
Fig. 5: Block responses. (a) Peak compressive vs. shear loads and (b) specific strength vs. displacement ratio.
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Fig. 6 : Connection points of a concrete aggregate-mortar cell [24]

Block type 1 Block type 2 Block type 3 Block type 4
Fig. 7 : Failure modes of the blocks and effective strain contour of their longitudinal sections

CONCLUSION Furthermore, it is found that, keeping weight constant, the

The application of numerical methods with discrete its both sides behaves better than the block having two
nature to the meso-scale simulation of concrete as a multi- complete internal holes. This can be attributed to its more
phase material can help us deepen our understanding of thick internal walls in which the effect of confinement is
the underlying mechanisms involved in its failure. more pronounced. 
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