Document Type : Original Article

Authors

Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science, University Ibn Zohr, Agadir, Morocco

Abstract

In this work, Crystal Violet (CV), cationic dye, is removed from aqueous solution, using wood of Argan shell(ARS) and Almond shell (ALS), as low-cost and eco-friendly biosorbants. The parameters influencing the adsorption of CVon each of our adsorbents, contact time (5–180 min), adsorbent dose (0.2–2 g), pH of the solution (3–11), temperature (20–50°C) and the initial dye concentration (50–500 mg.L-1), were studied.The modeling of experimental results obtained, shows that the CV adsorption on both biomaterials follows a pseudo-second-order kinetic and in perfect agreement with Langmuir isotherm. Also CV is better adsorbed on ALS that ARS, with maximum biosorption amounts 51.99 mg.g-1 and 37.32mg.g-1, respectively, at 40 ° C. Thermodynamic calculations have shown that the sorption is spontaneous, endothermic and random at the solid / solution interface. Adsorption capacities of dyes by ARS and ALS are better or comparable to those of several other biomaterials already studied.ALS and ARS biomaterials studied can be considered as alternative biosorbants low-cost and eco-friendly.
.

Keywords

1.     Nations Unies, 2014. Objectifs du Millénaire pour le développement, Rapport 2014.
2.     Mittal, A., J., Mittal, A., D., Malviya, Kaur, and V. K., Gupta, 2010. Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 343(2): 463-473.
3.     EL Khomri, M., A., EL Lacherai, and N., Messaoudi, 2014. Retention of Methylene Blue on an Agro-Source Material. International Journal of Engineering Research & Technology, 3: pp. 1657–1663.
4.     Hao, O.J., H., Kim, and P.,Chiang, 2000. Decolorization of Wastewater. Critical Reviews in Environmental Science and Technology, 30: pp. 449–505.
5.     Kumar, R., R., Ahmad, 2011. Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265: 112–118.
6.     Menendez, A., J.I., Lombraña, and A., De Luis, 2011. Lumped-intermediates analysis in the photooxidation of Rhodamine 6G in the H2O2/UV system. Korean Journal of Chemical Engineering, 28: 388–395.
7.     Ariyanti, D., M., Maillot, and W., Gao, 2018. Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation. Journal of Environmental Chemical Engineering, 6(1): 539-548.
8.     Kalyani, K.S.P., N., Balasubramanian, and C., Srinivasakannan, 2009. Decolorization and COD reduction of paper industrial effluent using. Chemical Engineering Journal, 151: 97–104.
9.     Kagalkar, A. N., U. B., Jagtap, J. P., Jadhav, V. A., Bapat, and S.P., Govindwar, 2009. Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresource technology, 100(18): 4104-4110.
10.   Chinwetkitvanich, S., M., Tuntoolvest, and T., Panswad, 2000. Anaerobic decolorization of reactive dyebath effluents by a two-stage UASB system with tapioca as a co-substrate. Water Research, 34: 2223–2232,
11.   Neamtu, M., A., Yediler, I., Siminiceanu, M., Macoveanu, and A., Kettrup, 2004. Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study. Dyes and pigments, 60(1): 61-68.
12.   Ciardelli, G., L., Corsi, and M., Marcucci, 2000. Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 31: 189–197.
13.   Salleh, M.A.M., D.K., Mahmoud, W.A.W.A., Karim, and A., Idris, 2011. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280: 1–13.
14.   Sulak, M.T., E., Demirbas, and M., Kobya, 2007. Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresource Technology, 98: 2590–2598.
15.   Ning-chuan, F., G.U.O., Xue-yi, and L., Sha, 2009. Enhanced Cu (Ċ) adsorption by orange peel modified with sodium hydroxide. Transactions of Nonferrous Metals Society of China, 20: s146–s152.
16.   Pavan, F. A., E. S., Camacho, E. C., Lima, G. L., Dotto, V. T., Branco, and S. L., Dias, 2014. Formosa papaya seed powder (FPSP): preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. Journal of Environmental Chemical Engineering, 2(1): 230-238.
17.   Basrur D., and J.I., Bhat, 2017. Activated Carbon from Fenugreek Seed : Characterization and Dyes Adsorption Properties. Iranian Journal of Energy & Environment, 8: 127–135.
18.   El Messaoudi, N., M., El Khomri, S., Bentahar, A., Dbik, and A., Lacherai, 2016. Removal of crystal violet by biosorption onto date stones. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 17(2): 151-167.
19.   Narvekar, A.A., J.B., Fernandes, and S.G., Tilve, 2018. Adsorption behavior of methylene blue on glycerol based carbon materials. Journal of Environmental Chemical Engineering, 6: 1714–1725.
20.   Nasuha, N., B.H., Hameed, and A.T.M., Din, 2010. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Journal of Hazardous Materials, 175: 126–132.
21.   Pavan, F.A., E.C., Lima, S.L.P., Dias, and A.C., Mazzocato, 2008. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. Journal of Hazardous Materials, 150: 703–712.
22.   Al-Ghouti, M.A., A., Hawari, and M., Khraisheh, 2013. A solid-phase extractant based on microemulsion modified date pits for toxic pollutants. Journal of Environmental Management, 130: 80–89.
23.   Fateh, T., 2012. Etude expérimentale et numérique de la cinétique de décomposition thermique de contreplaqués en bois  (Doctoral dissertation, ISAE-ENSMA. Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers, France.
24.   Bohnke, I., 1993. Étude expérimentale et théorique des traitements thermiques du bois . Caractérisation physico-mécanique des bois traités (Doctoral dissertation, L’Ecole Nationale Supérieure des Mines de Saint-Etienne).
25.   Bentahar, S., A., Lacherai, A., Dbik, and N., El-Messaoudi, 2015. Equilibrium , Isotherm , Kinetic and Thermodynamic Studies of Removal of Crystal Violet by Adsorption onto a Natural Clay. Iranica Journal of Energy & Environment, 6(4): 260–268.
26.   Essabir, H., S., Nekhlaoui, M., Malha, M. O., Bensalah, F. Z., Arrakhiz, A., Qaiss, and R., Bouhfid, 2013. Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Materials & Design, 51: 225-230.
27.   Arrakhiz, F. Z., M., El Achaby, K., Benmoussa, R., Bouhfid, E. M., Essassi, and A., Qaiss, 2012. Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Materials & Design, 40: 528-535.
28.   Ouajai, S., and R.A., Shanks, 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89: 327–335.
29.   Albano, C., J., González, M., Ichazo, and D., Kaiser, 1999. Thermal stability of blends of polyolefins and sisal fiber. Polymer Degradation and Stability, 66: 179–190.
30.   Güzel, F., H., Sayǧili, G.A., Sayǧili, and F., Koyuncu, 2014. Decolorisation of aqueous crystal violet solution by a new nanoporous carbon: Equilibrium and kinetic approach. Journal of Industrial and Engineering Chemistry, 20: 3375–3386.
31.   Sayg, H., and F., Gu, 2014. Decolorisation of aqueous crystal violet solution by a new nanoporous carbon : Equilibrium and kinetic approach. Journal of Industrial and Engineering Chemistry, 20: 3375–3386.
32.   El-Sayed, G.O., 2011. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination, 272: 225–232.
33.   Mahdavinia, G. R., H., Aghaie, H., Sheykhloie, M. T., Vardini, and H.,  Etemadi, 2013. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydrate polymers, 98(1): 358-365.
34.   El Messaoudi, N., M., El Khomri, A., Lacherai, S., Bentahar, A., Dbik, and B., Bakiz, 2017. Valorization and characterization of wood of the jujube shell: application to the removal of cationic dye from aqueous solution. Journal of Engineering Science and Technology (JESTEC), 12(2): 421-436.
35.   Khattri, S.D., and M.K., Singh, 1999. Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology, 17: 269–282.
36.   Mahalakshmi, K., S.K., Suja, K., Yazhini, S., Mathiya, and G. J., Kalaivani, 2014. A novel approach to investigate adsorption of crystal violet from aqueous solutions using peels of annona squamosal. Iranica Journal of Energy and Environment, 5(2): 113-123.
37.   Ahmad, R., 2009. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171: 767–773.
38.   Fu, J., Z., Chen, M., Wang, S., Liu, J., Zhang, and Q., Xu, 2015. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259: 53-61.
39.   Ho, Y.S., and G., McKay, 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34: 451–465.
40.   Patil, S., V., Deshmukh, S., Renukdas, and Patel, N., 2011. Kinetics of adsorption of crystal violet from aqueous solutions using different natural materials. International Journal of Environmental Sciences, 1(6): 1116-1134.
41.   Guo, J.Z., B., Li, L., Liu, and K., Lv, 2014. Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere, 111: 225–231.
42.   Liu, Y., 2009. Is the Free Energy Change of Adsorption Correctly Calculated? Journal of Chemical & Engineering Data, 54: 1981–1985.
43.   Ardejani, F. D., K., Badii, N. Y., Limaee, S. Z., Shafaei, and A. R., Mirhabibi, 2008. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. Journal of hazardous materials, 151(2-3): 730-737.
44.   Kumar, M., and R., Tamilarasan, 2013. Modeling studies for the removal of methylene blue from aqueous solution using Acacia fumosa seed shell activated carbon. Journal of Environmental Chemical Engineering, 1: 1108–1116.
45.   Ben Arfi, R., S., Karoui, K., Mougin, A., Ghorbal, 2017. Adsorptive removal of cationic and anionic dyes from aqueous solution by utilizing almond shell as bioadsorbent. Euro-Mediterranean Journal for Environmental Integration, 2 (1): 20-32.
46.   Bajpai, S.K., and A., Jain, 2012. Equilibrium and thermodynamic studies for adsorption of crystal violet onto spent tea leaves (STL). Water Journal, 4: 52-71.
47.   Kannan, C., N., Buvaneswari, and T., Palvannan, 2009.Removal of plant poisoning dyes by adsorption on Tomato Plant Root and green carbon from aqueous solution and its recovery. Desalination, 249: 1132–1138.
48.   Khattri, S.D., and M.K., Singh, 2000. Colour removal from synthetic dye wastewater using a bioadsorbent. Adsorption Journal Of The International Adsorption Society, 120: 283–294.