
Iranian (Iranica) Journal of Energy and Environment 10 (2): 159-164, 2019

159

Iranian (Iranica) Journal of Energy & Environment
Journal Homepage: www.ijee.net

 IJEE an official peer review journal of Babol Noshirvani University of Technology, ISSN:2079-2115

Secure Environment via Prediction of Software Vulnerabilities-Severity

E. S. Aghaee Meybodi, M. Ghasemzadeh*

Computer Engineering Group, Engineering Campus, Yazd University, Yazd, Iran

P A P E R I N F O

Paper history:
Received 02 March 2019
Accepted in revised form 24 June 2019

Keywords:
Machine Learning
Pattern Recognition
Prediction
Vulnerability Severity

A B S T R A C T

Prediction of software vulnerabilities-severity is of particular importance. Its most important application is
that managers can first deal with the most dangerous vulnerabilities when they have limited resources. This
research shows how we can use the former patterns of software vulnerabilities -severity along with machine
learning methods to predict the vulnerabilities severity of that software in the future. In this regard, we used
the SVM, Decision Trees (DT), Random Forests (RF), K Nearest Neighbors (KNN), bagging and AdaBoost
algorithms along with the already reported vulnerabilities of Google Android applications, Apple Safari and
the Flash Player. The experimental results showed that the Bagging algorithm can predict Google Android
vulnerability with accuracy of 78.21% and f1-measure equal to 77%, the vulnerability of the Flash Player
software with accuracy of 82.37% and f1-measure equal to 87.73% and predict the vulnerability severity of
the Apple Safari with accuracy of 70.58% and f1-measure equal to 70%. The novelty of this research is
introduction of a new method for prediction of software vulnerabilities severity.

doi: 10.5829/ijee.2019.10.02.14

INTRODUCTION1

Vulnerability is of great importance in many contexts such as

deep learning, software and live migration of virtual machines

[1-2]. In fact, vulnerability is a bug, flaw, weakness or

exposure of an application, system, device or service that

could lead to a failure of confidentiality, integrity or

availability. The exploitation of software vulnerabilities

creates significant security risks in the host computer system.

Software vulnerability is the most important item that

represents the level of software risk [3]. Given the restriction

of human and financial resources, software manufacturers can

prioritize vulnerabilities based on their criticality. For less

damage to the system, the vulnerabilities that are more critical

to be prioritized for repair.
So far, a lot of research has been conducted on the

forecasting of software vulnerabilities and several models

have been developed [4-15]. Due to limited financial and

human resources and increasing the number of vulnerabilities,

priority is given to predict and amendment of vulnerabilities

[16]. However, severity prediction of vulnerabilities is also

important because the same number of vulnerabilities might

cause different grades of damage because of their different

access spaces and occurrence methods. According to the

above, it seems that paying less attention to the severity of the

vulnerability is a problem that is presented in all predictive

* Corresponding Author Email: m.ghasemzadeh@yazd.ac.ir (Mohammad
Ghasemzadeh)

models. For this reason, in this article, we focussed on

predicting severity rather than the number of vulnerabilities.

Because software risk is associated with vulnerability

severity, we further study a security risk metric based on the

severity prediction of software vulnerability. In order to

investigate the ability of machine learning algorithms in

predicting the severity of the software, three examples of

highly vulnerable software are selected and the vulnerability

of each software is extracted from NVD database [17]. Then,

we provide the data of each software to the basic and

ensemble machine learning algorithms and examine the

results.

BACKGROUNDS AND RELATED WORKS

In recent years, many researchers have been working on

anticipating vulnerabilities and providing a lot of predictive

models. Here are some examples of these models:

Rahimi et al. [4] reviewed the correlation between

vulnerabilities with complexity and code quality. They

defined two metrics to represent code complexity (CC) and

code quality (CQ), respectively. They have modelled the

relationship between number of vulnerabilities and the two

factors via a random walk.

Riccardo et al. [5] used some ideas from defect prediction

and also used the security-oriented static analysis tool to

identify potential vulnerabilities in source code. Based on text

http://www.ijee.net/

Iranian (Iranica) Journal of Energy and Environment 10 (2): 159-164, 2019

160

mining of the source code, they presented an approach to

predict whether a software component is vulnerable.

In 2010, Nguyen and Tran [12] used machine learning

techniques and introduced a prediction model using the

correlation graph based on the relationship between software

components such as classes, variables, functions . Their

method is based on two different versions of JavaScript

engine Mozilla Firefox (JSE) have confirmed that the average

accuracy and recall for the first version were 60 and 68%

respectively. The second version was 60% for accuracy and

61% for recall.

Shin et al. [6-9] Commented on the relationship between

software features and vulnerabilities, and concluded that three

complexity features, code churn, and developer activity

metrics could be useful in predicting vulnerabilities .

Rescorla [10] proposeds an exponential model to

approximate the relation between time and the number of

vulnerabilities. This perhaps is the first time-series-based

VDM and it is inspired by some reliability models such as G-

O model and NHPP model.

Alhazmi and Malaiya [3] proposed a time-based model for

a cumulative number of vulnerabilities found after studying

the vulnerability data of two operating systems, Windows 98

and Windows NT. The model has been proved good fit on a

range of operating systems vulnerability data. Later they

propose an alternative model based on the effort that leads

into finding vulnerabilities. The effort-based model also

makes a good performance on the two operating systems

According to research, vulnerability prediction models are

allocated into two groups:

(1) Code-attributes-based models These models

focus on discovering the relationship between code attributes

and vulnerabilities. Nguyen and Tran [12] concentrated on the

source code dependencies of the software and developed the

prediction model using machine learning methods. Rahimi

and Zargham [4] extracted complexity features and code

quality from the source code, and developed a vulnerability-

detection model to forecast vulnerability detection. Shin et al.

[6-9] used software benchmarks, code churn and developer

activity metrics as forecasters and assumed logistic regression

to find vulnerabilities.

(2) Time-series-based models Basically, the target of

these models is to describe the relationship between time and

the accumulated number of vulnerabilities and to predict the

total number of vulnerabilities until a certain time point. To

achieve this goal, various kinds of models are proposed, such

as Alhazmi’s AML model [3], Rescorla’s exponential model

[10], Poisson’s logarithmic model [14], Anderson’s

thermodynamic model [15].

Current researches focus on the recognition of vulnerable

components and the prediction of the number of

vulnerabilities. However, the qualitative analysis of software

to determine whether it is vulnerable is too rough and has a

limited effect on the software security evaluation. Also,

taking the same severity for all vulnerabilities cannot

accurately reflect the software security level. We need to find

a new benchmark to replace the amount of vulnerabilities as

targets.

In our opinion, different vulnerabilities may have different

levels of severity. Therefore, a metric is needed to evaluate

the seriousness of each vulnerability. Then, there comes the

definition of “Common Vulnerability Scoring System

(CVSS)”.

The Common Vulnerability Scoring System (CVSS) is a

way to achieve the main features of a vulnerability and

generate a numerical score that reflects its severity. Numeric

scores can be converted into qualitative displays such as low,

medium, high, and critical and help users to properly evaluate

and prioritize their vulnerability management processes.

Severity vulnerability scores are calculated based on a

formula and depend on several criteria that clearly indicate

the exploitation and the impact of exploitation. CVSS scores

range from 0 to 10 with 0.1 increments and vulnerabilities

with severity of 10 are the most critical vulnerabilities. CVSS

criteria for severely scaling vulnerabilities are divided into

three groups:

Basic metrics measure the inherent and essential

characteristics of a vulnerability that does not change over

time or in different environments. Temporary metric, measure

the characteristics that change over time, but do not change in

user environments. Environmental metric measure those

vulnerabilities that are relevant and unique to a specific user.

There are six basic metrics that record the most important

vulnerabilities: accessibility vector, access complexity ,

identity authentication, privacy impact, impact integrity, and

impact of availability. The scoring process first calculates

benchmarks based on the fundamental equation, which gives

a score of 0 to 10 and creates a vector. If desired, the base

score can be more complete by assigning the values to the

time and environment criteria.

Software application vendors are providing CVSS base

scores and vectors to their customers . This helps them

properly communicate the severity of vulnerabilities in their

products and helps their customers effectively manage their

IT risk.

METHODOLOGIES

The algorithms that we used in our experiments were: the

SVM, Decision Trees (DT), Random Forests (RF), K Nearest

Neighbors (KNN), bagging and AdaBoost algorithms [18].

Support Vector Machines (SVM) are used for classification

in machine learning. SVM is the support vector of the

classification or classifier algorithm and is recognized as one

of the best techniques for categorizing and detecting outlier,

and unlike clustering algorithms in the learning category, it is

monitored and has two phases of training and testing. The

support vector machine was originally constructed for the

separation and categorization of linear separable data, but was

later extended for nonlinear mode. In fact, SVM needs to use

different kernels to separate nonlinear data. To do this, it does

not work in two-dimensional space, but data is mapped to a

more dimensional space so that it can be linearly segmented

in this new space. In fact, the main idea behind the backup

engineer is to draw up cloud-based screens in space to

optimize the operation of different data model types. Finds the

super-page with the largest margin of isolation, and the

closest educational data to the superconductor is called the

support vectors. The purpose of KNN algorithm is to use a

database in which the data points are separated into K separate

classes to predict the classification of a new sample point.

Iranian (Iranica) Journal of Energy and Environment 10 (2): 159-164, 2019

161

It has been used the concept of Bootstrap Aggregating to

make different estimates. In principle, Bagging (Bootstrap

Aggregation) can be used to evaluate the accuracy of the

estimates used in data mining methods through sampling by

replacing educational data. In this technique, it is assumed

that the educational series is representative of the community

under study, and a variety of realized states of society can be

simulated from this data set. Therefore, using the re-sampling

method will be achieved by employing a variety of different

data sets. When a new sample is entered into each of the class

divisions, a majority agreement is used to identify the class to

be desired.

Random forest is a tree-based technique that employs a

large number of decision trees that are made up of random

sets of properties. Unlike a simple decision tree, the random

forest method is highly untranslatable, but it's generally well-

functioning operation has made it a well-known algorithm.

Random Forests is an ensemble classifier that consists of

many decision trees and outputs the class that is the mode of

the classes output by individual trees [18]. AdaBoost or

adaptive boosting is a well-known method for boosting.

AdaBoost produces a very accurate classification rule by

combining moderately inaccurate weak classifiers.

The main idea of this paper is to investigate the ability of

machine learning algorithms to forcast the vulnerability

severity. The number of data to run the machine learning

algorithms should be high enough otherwise the training is not

done well. For this purpose, we use three software with high

vulnerability in this article. Table 1 shows the names of these

software and the number of registered vulnerabilities from

1999 until the end of 2016. The experimental data comes from

NVD [17].

For each of this three software, we extract the recorded

vulnerability from 1999 to 2016 and create a feature vector.

To create a feature vector, CVE identifier, release date, and

severity of the vulnerability are used. The severity of the

vulnerabilities registered in NVD is based on the CVSS

standard which is continuous numbers for 0 to 10 with

intervals of 0.1.

Finally, we only consider the Sorted Vulnerability severity

as the feature vector and the time series data. We create a

feature vector based on the number of time delay. The number

of time delays that used for different algorithms and software

varies; if the number of time delays used is high, it causes

overfitting. If we have too many features, the learning

hypothesis may fit the training set very well (with cost

function J(θ)≈0) but fail to generalize to new examples. This

means overfitting. So the number of delays used should be

appropriate.

For each experiment, among these samples, in accordance

with the usual training procedure, two-thirds of the samples

TABLE 1. Properties of tree Software with high vulnerability

Product Vendor Type
Number of

vulnerability

Flash player Adobe Application 995

Android Google OS 942

Safari Apple Application 860

are selected as training data and one-third of the samples are

taken as test data; that is, the ratio of the data from the training

to the test is from 70 to 30.

Random forest and decision tree are implemented using

WEKA and the rest of the algorithms are implemented with

MATLAB software. Due to its importance in this research,

we have implemented the bagging algorithm with both of the

software. Sampling method with replacement has been used

in the method of bagging and random forest. It is obvious that

the random selection with replacement leads to an overlap

between the different education collections and the number of

sample collections being different. Also in the Bagging

method and the random forest, at each step after training, the

classifiers are cast for each sample of the test data. The result

of the vote indicates that the severity of the next vulnerability

is in which class.

In the implementation of the SVM algorithm, the RBF

kernel function is used. The two parameters for this algorithm

must be set. The j48 algorithm is the decision tree algorithm

implemented with WEKA software. The algorithms of

RUSBoost, AdaboostM2, and Subspace are AdaBoost

algorithms. The discrete and interpolation method varies for

different software applications. In the following, the

breakdown and trivialization of the three Google Android

applications, Flash player and Apple Safari can be

summarized in Tables 2 to 5.

TABLE 2. Labeling method and number of samples in the 4-

class of Google Android software
Class

name
Intervals

Number of

training data

Number of

test data

Total

data

Low 0-6.6 172 49 221

Medium 6.7-8.8 155 55 210

High 8.9-9.3 230 96 326

Critical 9.4-10 97 81 178

Total 654 281 935

TABLE 3. Labeling method and number of samples in the 3-

class of Google Android software

Class

name
Intervals

Number of

training data

Number of

test data

Total

data

Medium 0-7.1 243 66 309

High 7.2-9.3 314 133 447

Critical 9.4-10 97 81 178

Total 654 280 934

TABLE 4. Labeling method and number of samples in the 3-

class of flash player software

Class

name
Intervals

Number of

training data

Number of

test data

Total

data

Medium 0-9 106 46 152

High 9.1-9.5 175 66 241

Critical 9.6-10 411 185 596

Total 692 297 989

Iranian (Iranica) Journal of Energy and Environment 10 (2): 159-164, 2019

162

TABLE 5. Labeling method and number of samples in the 3-

class of apple safari software

Class

name
Intervals

Number of

training data

Number of

test data

Total

data

Medium 0-5.4 188 83 271

High 5.5-7.2 191 99 291

Critical 7.3-10 217 73 290

Total 596 255 851

RESULTS

We evaluated the algorithm performance by means of four

indicators:

• Accuracy is the percentage of correct results.

Accuracy =
𝑇𝑃 +TN

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1)

• Precision is the probability that a (randomly selected)

retrieved document is relevant.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

• Recall is the probability that a (randomly selected) relevant

document is retrieved in a search

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

• F1-measure is often introduced as a harmonic mean of

precision and recall.

𝑓1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

Since F1-measure considers both precision and recall, we

select F1-measure as the main evaluation metric. The goal is

to maximize this metric and compare the results by this

metric. In the following, we will describe the results obtained

from the implementation of machine learning algorithms for

Google Android applications, Flash Player and Apple Safari.

Results of prediction for Google Android

Table 6 shows the results of the accuracy of prediction in

Google Android. Since the number of data in classes are

unbalanced and the number of classes is more than two; the

accuracy metric is not a complete metric for comparison.

Therefore, we have used other metrics such as F1-measure

which results are presented in Table 7.

As indicated in Table 6, in 4-class mode, the highest

accuracy devoted to Bagging and RUSBoost algorithms

which have 68.93 and 68.68%, respectively. In 3-class mode,

the highest values for the Bagging and SVM algorithms are

78.21%. In 3- class mode results were better than 4-class.

According to summary of results in Table 7, the best F1-

measure in 4-class mode belongs to the RUSBoost and

Begging algorithms with values of 65% and 65.31%. In 3-

class mode, the best results belong to beginning algorithms

and SVM that the F1-measure is approximately 76.98%. In

this experiment, the Bagging classifier performs better and the

best result is when the number of classifiers is 3.

In general, the severity of the next Android vulnerability

is predictable with accuracy 78.21% and F1-measure about

77% with the Bagging algorithm that uses the combination of

the decision tree classifiers.

Results of prediction for flash player

Table 8 shows the results of the accuracy of prediction for

flash player. As can be seen in this table, the highest accuracy

values associated with bagging random forest which is

approximately 82.49%. As can be seen in Table 9, subspace

and bagging algorithms have a higher average F1-measure

and their values are 73.56% and 73.87%, respectively. So, in

general, the Bagging algorithm with an accuracy of 82.37%

and an F1-measure of approximately 73.87%, are capable of

predicting the severity of the software vulnerability for the

flash player.

TABLE 6. Accuracy results for google android

Number of class 4-class 3-class

Classification algorithm Train accuracy Test accuracy Train accuracy Test accuracy

RUSBoost 69.47 68.68 74.66 73.21

Bagging 72.63 68.93 82.52 78.21

AdaBoostM2 74.65 67.62 75.42 75.1

KNN 65.70 65.60 70.78 70.57

Subspace 84.58 65.48 78.32 76.16

SVM 69.31 67.5 80.67 78.21

J48 68.70 65.48 75.45 71.15

Random forest 84.89 65.48 78.78 75.8

Bagging(WEKA) 67.78 67.14 77.5 72.37

Iranian (Iranica) Journal of Energy and Environment 10 (2): 159-164, 2019

163

TABLE 7. Precision, recall and f1-measure results for google android

Number of class 3-class 4-class

Classification algorithm Precision Recall F1-measure Precision Recall F1-measure

RUSBoost 71.38 73.53 72.17 64.88 65.25 65

Bagging 77.57 76.33 76.96 65.80 64.92 65.31

AdaBoostM2 73.92 72.27 72.96 64.22 63.55 63.83

KNN 69.85 71.93 69.83 63.36 62.1 62.61

Subspace 75.42 73.69 74.43 62.76 62.1 62.35

SVM 77.80 76.33 76.98 63.98 63.65 64.51

TABLE 8. Accuracy results for flash player

Number of class 3-class

Classification algorithm Train accuracy Test accuracy

RUSBoost 80.66 80.47

Bagging 82.83 82.37

AdaBoostM2 86.13 81

KNN 85.84 81.48

Subspace 81.53 81.15

SVM 84.13 82.49

J48 83.38 81.82

Random forest 83.29 82.49

Bagging(WEKA) 82.52 82.1

TABLE 9. Precision, recall and f1-measure results for flash

player

Number of class 3-class

Classification algorithm Precision Recall F1-measure

RUSBoost 72.61 71.25 72.56

Bagging 77.88 72.54 73.87

AdaBoostM2 75.78 77.65 72.28

KNN 77.62 71.21 72.78

Subspace 78.76 70.91 73.56

SVM 80.12 69.89 72.97

Results of prediction for apple safari

The accuracy' results of the algorithms on the Apple Safari

software are shown in Table 10. As can be seen in this table,

the highest accuracy values associated with SVM, random

forest, Bagging, and subspace which are approximately

70.58%.

As shown in Table 11, subspace, bagging, and SVM

algorithms have a higher mean F1-measure and have a value

of 69.1, 69.45 and 70.32%, respectively. So, in general, the

Bagging algorithm and SVM with an accuracy of

approximately 70.58% and F1-measure of approximately

70% can be very good in predicting the severity vulnerability

of the Apple Safari.

TABLE 10. Accuracy results for apple safari

Number of class 3-class

Classification algorithm Train accuracy Test accuracy

RUSBoost 74.29 68.5

Bagging 80.87 70.58

AdaBoostM2 80.94 67.19

KNN 76.3 67.19

Subspace 70.64 70.2

SVM 75.46 70.70

J48 69.73 69.53

Random forest 75.46 70.31

Bagging(WEKA) 72.86 70.70

TABLE 11. Precision, recall and f1-measure results for apple

safari

Number of class 3-class

Classification algorithm Precision Recall F1-measure

RUSBoost 67.52 67.53 67.26

Bagging 69.42 69.84 69.45

AdaBoostM2 66.85 66.83 66.61

KNN 69.15 66.62 66.43

Subspace 69 69.17 69.1

SVM 71.15 70.34 70.32

CONCLUSIONS

Software vulnerability is the most important item that

represents the level of software risk. Different vulnerabilities

may have different levels of severity. Current researches

focus on the recognition of vulnerable components and the

prediction of the number of vulnerabilities. However, the

qualitative analysis of software to determine whether it is

vulnerable is too rough and has a limited effect on the

software security evaluation; Also, taking the same severity

for all vulnerabilities cannot accurately reflect the software

security level. For this reason, In this paper we applied

Iranian (Iranica) Journal of Energy and Environment 10 (2): 159-164, 2019

164

machine learning methods to forecast the vulnerabilities

severity. Bagging which uses the combination of decision

trees could forecast the severity of the future vulnerability of

software with higher accuracy than the other applied

algorithms. Using the result of this research, software vendors

can predict the vulnerability severity of their products.

REFERENCES

1. Yuan, Xiaoyong, et al. “Adversarial Examples: Attacks

and Defenses for Deep Learning.” IEEE Transactions on
Neural Network,, 2019, pp. 1–20.

2. M. Tajamolian, and M. Ghasemzadeh. “A Versioning

Approach to VM Live Migration.” International Journal

of Engineering, Transactions B: Applications, vol. 31,
no. 11, 2018, pp. 1838–1845.

3. O. H. Alhazmi and Y. K. Malaiya, ‘Prediction

capabilities of vulnerability discovery models’, in RAMS

’06. Annual Reliability and Maintainability Symposium,
2006. 2006, pp. 86–91.

4. S. Rahimi and M. Zargham, ‘Vulnerability Scrying

Method for Software Vulnerability Discovery Prediction

Without a Vulnerability Database’, IEEE Transactions
on Reliability, vol. 62, no. 2, pp. 395–407, 2013.

5. R. Scandariato, J. Walden, A. Hovsepyan, and W.

Joosen, ‘Predicting vulnerable software components via

text mining’, IEEE Transactions on Software
Engineering, 2014.

6. Y. Shin and L. Williams, ‘An empirical model to predict

security vulnerabilities using code complexity metrics’,

Proceedings of the Second ACM-IEEE international

symposium on Empirical software engineering and

measurement - ESEM ’08, 2008

7. Y. Shin and L. Williams, ‘Is Complexity Really the

Enemy of Software Security’,, Proc. the 4th ACM

Workshop on Quality of Protection, Alexandria,

Virginia, USA, Oct. 2008.

8. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne,

‘Evaluating complexity, code churn, and developer

activity metrics as indicators of software vulnerabilities’,
IEEE Transactions on Software Engineering, 2011.

9. Y. Shin and L. Williams, ‘Can traditional fault prediction

models be used for vulnerability prediction?’, Empirical
Software Engineering, 2013.

10. E. Rescorla, ‘Is finding security holes a good idea?’,
IEEE Security and Privacy. 2005

11. R. Scandariato and J. Walden, ‘Predicting vulnerable

classes in an Android application’, Proceedings of the 4th

international workshop on Security measurements and
metrics - MetriSec ’12, 2012.

12. V. H. Nguyen and L. M. S. Tran, ‘Predicting vulnerable

software components with dependency graphs’,

Proceedings of the 6th International Workshop on

Security Measurements and Metrics - MetriSec ’10, New

York, USA: ACM Press. pp. 3–10, 2010.

13. C. Nie, X. Zhao, K. Chen, and Z. Han, ‘An software

vulnerability number prediction model based on micro -

parameters’, Jisuanji Yanjiu yu Fazhan/Computer

Research and Development, 2011.

14. J. D. Musa and K. Okumoto, ‘A logarithmic poisson

execution time model for software reliability

measurement’, in Proceedings of the 7th international

conference on Software engineering, 1984, pp. 81–87.

15. R. Anderson, ‘Security in Open versus Closed Systems -

The Dance of Boltzmann, Coase and Moore’, vol. 4, no.
15, pp. 121–127, 2002.

16. Geng, Jinkun, Daren Ye, and Ping Luo. 2015.

“Forecasting Severity of Software Vulnerability Using

Grey Model GM(1,1).” In 2015 IEEE Advanced

Information Technology, Electronic and Automation

Control Conference (IAEAC), 344–48.

17. U.S Department of commerce, “NVD. National

Vulnerability Database.“ [Online]. Available at:
https://nvd.nist.gov/. [Accessed: 106-May-2019].

18. Ian H Witten, and Frank Eibe. Data Mining: Practical

Machine Learning Tools with Java Implementations.
1999.

Persian Abstract
DOI: 10.5829/ijee.2019.10.02.14

 چکیده

دارند، اریکه در اخت یمنابع محدود گریبا توجه به زمان و د رانیاست که مد نیکاربرد آن، ا نیتردارد. مهم یخاص تیافزار اهمنرم یریپذبیآس شدتِ ینیبشیپ

 یریکارگافزارها و بهنرم یریپذبیشدت آس سابقِ یاز الگوها توانیکه چگونه م دهدینشان م قیتحق نیموارد مقابله کنند. ا نیرتریپذبیابتدا با آس توانندیم

 بان،یردار پشتب نیماش م،یدرختان تصم یهاتمیعملکرد الگور ،راستا نیبهره برد. در ا ندهیافزارها در آنرم یریپذبیآس یِنیبشیپ یبرا ن،یماش یریادگی یهاروش

اپل و یگوگل، سافار دیاندرو یکاربرد یهابرنامه یشده براگزارش یهایریپذبیو آدابوست را در کنار آس نگیبگ گان،یهمسا نیترکینزد ،یتصادف یهاجنگل

 ،درصد 77برابر f1و ملاک درصد 21/78را با دقت دیگوگل اندرو یریپذبیآس تواندیم نگیبگ تمینشان دادند که الگور جی. نتا میقرار داد یبررس رموردیفلش پل

را با دقت یاپل سافار یریپذبیشدت آس نیکند. همچن ینیبشیدرصد پ 73/87برابر با f1و ملاک درصد 37/82را با دقت ریافزار فلش پلنرم یریپذبیآس

افزار رمن یریپذبیشدت آس ینیبشیپ یبرا دیروش جد کی یبر معرف یمتک قیتحق نیا یکند. نوآور ینیبشیپ درصد 70با برابر f1و ملاک درصد 58/70

 .است

