IJEE an Official Peer Reviewed Journal of Babol Noshirvani University of Technology

Comparison of Nutritional Values of *Chlorophytum comocum* and *Alocacia indica*, Vegetables Consumed in India and Iran: A Preliminary Study

Ali Aberoumand

Department of Fisheries, Behbahan High Educational Complex, Behbahan, Khuzestan Province, Iran

Abstract: In addition to meeting nutrient intake levels, greater consumption of fruits and vegetables is associated with reduced risk of cardiovascular disease, stroke and cancers. The proximate composition and mineral constituents of *Chlorophytum comocum* root tubers were evaluated. The root tubers contained a ashes: 10.38%, crude protein: 4.54%, crude lipid: 2.00%, crude fiber: 17.24% and carbohydrates: 65.84%. The leaves and stem also have high energy value (299.52kcal/100g)dry weight where as *Alocacia indica* stem contained a ashes: 9.1%, crude protein: 5.44%, crude lipid: 3.25%, crude fiber: 22.9% and carbohydrates: 59.31%. The stem also have high energy value (288.25kcal/100g) dry weight Comparing the root tubers mineral contents with recommended dietary allowances (RDA), the results indicated that *Chlorophytum comocum* root tubers could be a good supplement for some nutrients such as calcium, fibre and carbohydrates where as the results indicated that *Alocacia indica* stem could be a good supplement for some nutrients such as Fibre, Potassium, Zinc, lipid and Carbohydrates. The root tubers and the stem could be promoted as a carbohydrate supplement for cereal-based diets in poor rural communities, while its high potassium content could be utilized for the management of hypertension and other cardiovascular conditions.

Key words: Chlorophytum comocum · Alocacia indica S. · Micronutrients · Proximate and mineral composition

INTRODUCTION

In developing nations, numerous types of edible wild plants are exploited as sources of food hence provide an adequate level of nutrition to the inhabitants. Recent studies on agro pastoral societies in Africa indicate that these, plant resources play a significant role in nutrition; food security and income generation [1].

Furthermore, Food and Agricultural Organization (FAO) report, at least one billion people are thought to use wild foods in their diet [2]. In Ghana along, the leaves of over 300 species of wild plants and fruits are consumed. In Swaziland, wild plants provide a greater share of the diet than domesticated cultivars. In India, Malaysia and Thailand, about 150 wild plants species have been identified as sources of emergency food [2]. Similarly, in South Africa about 1400 edible plant species are used, In Sahel region of Africa, over 200 wild foods were identified to be used by the rural communities [3]. In most of these reports, it was emphasized that nutritionally,

these unconventional plants foods could be comparable to or even sometimes superior to the introduced cultivars [1]. It is, therefore, worthwhile to note that the incorporation of edible wild and semi-cultivated plant resources could be beneficial to nutritionally marginal populations or to certain vulnerable groups within populations, especially in developing countries where poverty and climatic changes are causing havoc to the rural populace. In this context, analyses were carried out to evaluate the nutritional content of *Chlorophytum comocum* root tubers and *Alocacia indica* stem with hope that it would be incorporated into the food basket of the country [4-7].

MATERIALS AND METHODS

Plant Material: Chlorophytum comocum root tubers and Alocacia indica stem used as experimental material were collected from farm lands in around Behbahan, South Iran, in October 2007. The collected plant material was placed

in a polyethylene bag to prevent loss of moisture during transportation to the laboratory.

Preparation of the Plant Material for Chemical Analyses: Chlorophytum comocum root tubers and Alocacia indica stem were washed with distilled water and dried at room temperature to remove residual moisture, then placed in paper envelope and oven-dried at 55°C for 24 hours [8]. The dried root tubers were ground into powder using pestle and mortar and sieved through 20-mesh sieve. The stem powder was used for the nutrients analyses.

Proximate Analys is: The methods recommended by the Association of Official Analytical Chemists (AOAC) were used to determine ash (#942.05), crude lipid (#920.39), crude fibre (#962.09) and nitrogen content (#984.13) [9].

Determination of Crude Lipid and Crude Fibre Content:

Two grams of dried samples were weighed in a porous thimble of a Soxhlet apparatus, with its mouthed cotton wool plugged. The thimble was placed in an extraction chamber which was suspended above a pre-weighed receiving flask containing petroleum ether (b.p. 40-60°C). The flask was heated on a heating mantle for eight hours to extract the crude lipid. After the extraction, the thimble was removed from the Soxhlet apparatus and the solvent distilled off. The flask containing the crude lipid was heated in the oven at 100°C for 30 minutes to evaporate the solvent, then cooled in a dessicator and reweighed. The difference in weight was expressed as percentage crude lipid content.

Crude fibre was estimated by acid-base digestion with $1.25\%~H_2SO_4$ (prepared by diluting 7.2 ml of 94% conc. acid of specific gravity 1.835g~ml-1 per 1000~ml distilled water) and 1.25%~NaOH~(12.5~g~per~1000~ml distilled water) solutions. The residue after crude lipid extraction was put into a 600 ml beaker and 200 ml of boiling $1.25\%~H_2SO_4$ added. The contents were boiled for 30 minutes, cooled, filtered through a filter paper and the residue washed three times with 50 ml aliquots of boiling water. The washed residue was returned to the original beaker and further digested by boiling in 200 ml of 1.25%~NaOH~for~30~minutes. The digest was filtered to obtain the residue. This was washed three times with 50 ml aliquots of boiling water and finally with 25 ml ethanol.

The washed residue was dried in an oven at 130°C to constant weight and cooled in a dessicator. The residue was scraped into a pre-weighed porcelain crucible, weighed, ashed at 550°C for two hours, cooled in a dessicator and reweighed. Crude fibre content was expressed as percentage loss in weight on ignition [9].

Determination of Nitrogen Content and Estimation of Crude Protein: Macro-Kjeldahl method was used to determine the nitrogen content of the stem. 2g of dried samples were digested in a 100 ml Kjeldahl digestion flask by boiling with 10 ml of concentrated tetraoxosulphate (VI) acid and a Kjeldahl digestion tablet (a catalyst) until the mixture was clear. The digest was filtered into a 100 ml volumetric flask and the solution made up to 100 ml with distilled water. Ammonia in the digest was steam distilled from 10 ml of the digest to which had been added 20 ml of 45% sodium hydroxide solution. The ammonia liberated was collected in 50 ml of 20% boric acid solution containing a mixed indicator. Ammonia was estimated by titrating with standard 0.01 mol L⁻¹ HCl solution. Blank determination was carried out in a similar manner. Crude protein was estimated by multiplying the value obtained for percentage nitrogen content by a factor of 6.25 [9].

Estimation of Carbohydrates and Energy Values: Available carbohydrate was estimated by difference, by subtracting the total sum of percent crude protein, crude lipid, crude fibre and ash from 100% DW of the fruit The plant calorific value (in kJ) was estimated by multiplying the percentages of crude protein, crude lipid and carbohydrate by the factors 16.7, 37.7 and 16.7, respectively [9].

Mineral Analysis: The mineral elements Na, K, Ca, Fe and Zn were determined on 0.3g samples powder by the methods of Funtua [5,6]. using Energy Dispersive X-ray transmission Fluorescence (EDXRF) emission spectrometer carrying an annuar 25 mCi 109Cd isotopic excitation source that emits Ag-K X-ray (22.1 keV) and a Mo X-ray tube (50KV, 5mA) with thick foil of pure Mo used as target material for absorption correction. The system had a Canberra Si (Li) detector with a resolution of 170eV at 5.9keV line and was coupled to a computer controlled ADCCard (Trump 8K). Measurements were carried out in duplicate. Na was analyzed after wet digestion of one gramme of the root tubers powder with nitric/perchloric/sulphuric acid (9:2:1 v/v/v) mixture. Sodium was analyzed with a Corning 400 flame photometer [9].

RESULTS AND DISCUSSION

Proximate Analysis: The results of proximate composition of *Chlorophytum comocum* root tubers and *Alocacia indica* stem are shown in Table 1 and 2. The ash content, which is an index of mineral contents, for

Table 1: Proximate composition of Chlorophytum comocum root tubers

2.00.0 2.7.2.0				
Parameters	Concentration (%DW) *			
Ash	10.38 ± 0.80			
Crude protein	4.54± 0.27			
Crude lipid	2.00± 0.50			
Crude fibre	17.24 ± 0.35			
Carbohydrates	65.84±0.68			
Calorific value(kcal/100g)	299.52±5.31			

^{*} The data are mean values± deviation (SD) of three replicates.

Chlorophytum comocum root tubers and Alocacia indica stem the value of 10.38% DW was less than to the values reported for other edible leaves such as Momordica balsamina leaves (18.00 \pm 1.27% DW) [10-12]. It is apparent that Chlorophytum comocum root tubers are a good source of Calcium where as Alocacia indica stem are a good source of Potassium and Zinc. The root tubers crude protein content (4.54%) was less than where as stem crude protein content (19.38%) was higher than what is reported for some lesser known wild leafy vegetables such as Momordica balsamina (11.29 \pm 0.07%), Moringa oleifera (20.72%), Lesianthera africana leaves (13.10-14.90%) and Leptadenia hastate (19.10%) [13,14], plant food that provide more than 12% of their calorific value from protein are a good source of protein. In that context, Chlorophytum comocum root tubers (4.54%) and Alocacia indica stem (19.38%) are a relatively good source of protein. The crude lipid content (2.00%) of the root tubers and crude lipid content (4.7%) of the stem was less than the range (8.3-27.0% DW) reported for some vegetables consumed in Nigeria and Republic of Nigerian [15,16].

Table 2: Proximate composition of Alocacia indica S. Stem

Parameters	Concentration (% DW) *		
Ash	7.3± 0.80*		
Crude protein	5.7± 0.27*		
Crude lipid	3.29± 0.50*		
Crude fibre	11.05± 0.35*		
Carbohydrates	72.66±0.68*		
Calorific value(kcal/100g)	343.05±5.31		

^{*} The data are mean values± deviation(SD) of three replicates

The estimated carbohydrate contents (65.84%) in Chlorophytum comocum root tubers and (47.92%) in Alocacia indica stem was stand to be higher than that for Senna obtusfolia leaves (20%) and Amaranthus incurvatus leaves (23.7%). On the other hand, Chlorophytum comocum root tubers and Alocacia indica stem contain comparable amount of carbohydrate for Momordica balsamina (39.05 \pm 2.01%). The crude fibre content in Chlorophytum comocum root tubers (17.24 %) in Alocacia indica stem (21.3 %) was more than the reported values (8.50-20.90%) for some Nigeria vegetables [15]. One discussed drawback to the use of vegetables in human nutrition is their high fibre content, which may cause intestinal irritation and a decrease of nutrient bioavailability. The fibre RDA values for children, adults, pregnant and breast-feeding mothers are 19-25%, 21-38%, 28% and 29% respectively. Thus, Chlorophytum comocum root tubers and Alocacia indica stem could be a valuable source of dietary fibre in human nutrition. The calorific value of Chlorophytum comocum root tubers and for Alocacia indica stem was estimated to be 299.52 kcal/100g (DW) and 311.5 kcal/100g (DW) respectively

Table 3: Mineral composition of Chlorophytum comocum root tubers

	Recommended Dietary Allowances(mg/day) †						
Mineral	Available Quantity in mg/100gDW*	Children 7-10 Years	Adult male	Adult female	Pregnant and Lactating mother		
Potassium	4.29±0.02	800	800	800	1200		
Calcium	13.14±0.15	1600	2000	2000	2000		
Sodium	3.95±0.08	400	500	400	500		
Iran	1.89 ± 0.01	10	10	15	13		
Zinc	0.76±0.07	10	15	12	19		

^{*} The data are mean values± deviation(SD) of three replicates. † Sources: Thangadari et al. (2001)

Table 4: Mineral composition of Alocacia indica S. Stem

Mineral	Recommended Dietary Allowances(mg/day) †					
	Available Quantity in mg/100gDW*	Children 7-10 Years	Adult male	Adult female	Pregnant and Lactating mother	
Calcium	0.88±0.02	800	800	800	1200	
Potassium	3.40±0.15	1600	2000	2000	2000	
Sodium	4.40±0.08	400	500	400	500	
Iron	0.48 ± 0.01	10	10	15	13	
Zinc	1.21±0.07	10	15	12	19	

^{*} Values expressed as % wet weight.

^{*} Values except Calorific value expressed as % DW

which is an indication that it could be an important source of dietary calorie. High calorific content of the root tubers could be attributed to high carbohydrates content.

Mineral Content: Table 3 and 4 shows the results of the mineral concentrations of *Chlorophytum comocum* root tubers and *Alocacia indica* stem. Nutritional significant of elements is compared with the standard recommended dietary allowance. When compared with standard values as showed in Table 3, *Chlorophytum comocum* root tubers less than adequate level of K, Fe, Zn, Ca and Na, but the plant stem could be good source of Calcium while the plant stem could be good source of K, Na and Zinc.

Concluding Remarks: The results of the nutritional analysis shown that Chlorophytum comocum root tubers is good sources of plant Calcium, carbohydrates where as Alocacia indica stem is good sources of plant fibre, potassium, Sodium, zinc, lipid and carbohydrates. The results suggests that the plants root tubers and the stem if consumed in sufficient amount could contribute greatly towards meeting human nutritional requirement for normal growth and adequate protection against diseases arising from malnutrition. From the result, Chlorophytum comocum root tubers and Alocacia indica stem are recommend for continues used for nutritional purposes, considering to the amount and diversity of nutrients it contains. Chemical analysis alone however, should not be the exclusive criteria for judging the nutritional significance of a plant parts. Thus, it becomes necessary order aspects consider such as presence antinutritional/ toxicological factors and biological evaluation of nutrient content [17].

ACKNOWLEDGEMENTS

The authors are grateful to the Head Department of Botany University of Pune for providing necessary laboratory facilities and for encouragement.

REFERENCES

- Edmonds, J. and J. Chweya, 1995. Black nightshades, Solanum nigrum L. and related species. Promoting the conservation and use of underutilized and neglected crops. Taylor and Francis, London.
- Burlingame, B., 2000. Comparison of total lipids, fatty acids, sugars and nonvolatile organic acids in nuts from *Castanea* species. J. Food Composition and Analytical, 13: 99-100.

- Plessi, M., D. Bertelli, A. Phonzani, M. Simonetti, A. Neri and P. Damiani, 1999. Role of indigenous leafy vegetables in combating hunger and malnutrition, J. Food Composition and Analytical, 12: 91-96
- Sena, L., D. VanderJagt, C. Rivera and A. Tsin, 1998. Muhammadu I. Mahamadou O. Milson M. Pastosyn A. and Glew R. Nutritional profile of some edible plants from Mexico, Plant Foods for Human Nutrition. 52: 17-30.
- Funtua, I., 2004. Minerals in foods: Dietary sources, chemical forms, interactions, bioavailability, Instrumentation Sci. Technol., 32: 529-536.
- Funtua, I. and J. Trace, 1999. Quantitative variability in *Pisum* seed globulins: its assessment and significance. Plant Foods for Human Nutrition, 17: 293-297.
- Ifon, E. and O. Bassir 1980. Determination of carbohydrates in foods. II-unavailable carbohydrates. Food Chem., 5: 231-235.
- Abuye, C., K. Urga, H. Knapp, D. Selmar, A. Omwega, J. Imungi and P.A. Winterhalter, 2003. Survey of wild, green, leafy vegetables and their potential in combating micronutrient deficiencies in rural populations, East African Medicine J., 80: 247-252.
- 9. AOAC., 1990. Official methods of analysis, 14th edition, Association of Official Analytical Chemists, Washington DC. Arlington, Virginia, USA.
- 10. Aletor, V. and O. Adeogun, 1995. Chemical analysis of the fruit of *Vitex doniana* (Verbenaceae). Food Chem., 53: 375-379.
- 11. Asibey-Berko, E. and F. Tayie, 1999. The antibacterial properties of some plants found in Hawaii, Ghana J. Sci., 39: 91-92.
- Faruq, U., A. Sani and L. Hassan, 2002. Composition and distribution of deadly nightshade. Niger J. Basic Application Sci., 11: 157-164.
- Nesamvuni, C., N. Steyn and M. Potgieter, 2001. nutrients analysis of selected western African foods, South African J. Sci., 97: 51-54.
- Pearson, D., 1999. Nutrient and chemical composition of 13 wild plant foods of Niger. Ghana J. Sci., 39: 91-92.
- 15. Isong, E. and U. Idiong 1997. Nutrient content of the edible leaves of seven wild plants from Nigerian. Plant Foods for Human Nutrition, 51: 79-84.
- Mottram, D.S. B.L. Wedzicha and A.T. Dodson, 2002. Acrylamide is formed in the Maillard reaction. Nature, 419: 449-450.
- 17. Aberoumand, A. and S.S. Deokule, 2008. Comparison of compounds of some edible plants of Iran and India, Pakistan J. Nutrition, 7(4): 582-585.