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A B S T R A C T  
 

 

The development of models that predict power production of wind farms (WFs) by considering 
the interacting wakes is important; because wakes of the turbines exert a significant influence 
on power production of turbines, and hence on the layout of wind turbines in WFs. Thus, the 
purpose of present study was to provide an innovative analytical method for the prediction of 
power generation of the WFs that have a flat terrain and are consisted of horizontal-axis wind 
turbines (HAWTs) with the same hub height. The methodology employed utilized an analytical 
Gaussian model of HAWT wake to develop an analytical model that calculates the effective wind 
velocity acting on the downstream HAWT(s), which is further used for reading its generated 
power from the turbine’s catalog; thus, providing the generated power of the WF as the output. 
The results of presented model were validated by the field measurements data of Horns Rev WF 
and also were compared to two analytical models for predicting the generated power. The 
results were compared with two numerical simulations of the literature, and the output data of 
three commercial software. Moreover, the error analysis revealed that the presented model 
mostly showed superior accuracy in predicting the field measurements data.  

doi: 10.5829/ijee.2022.13.04.09 

 

Nomenclature  

PC  Efficiency coefficient of  turbine ,zu  Wind 2d vertical velocity (free stream) profile (m s-1) 

TC  Thrust coefficient turbine  effu  Upstream turbine 𝑖 wake velocity profile effective on the 

downstream wind turbine 𝑗 (m s-1) 

td  Diameter of turbine (m) refu  Wind velocity (free stream) measured at refz (m s-1) 

w,0d  Initial diameter of wake (m) w,i,z,y,xu  Wake 3d velocity profile of upstream turbine i at x (m s-1) 

w,xd  Diameter of wake at x (m) w,r,xu  Wake 2d velocity profile at x (m s-1) 

I  Turbulence intensity of the incoming wind w,r ,xu  Mean velocity of wake at x (m s-1) 

wakeI  Turbulence intensity of wake w,z,y,xu  Wake 3d velocity profile (m s-1) 

wk  Decay coefficient of wake x  Downstream length from turbine (m) 

w,revk  Revised coefficient of wake decay y  Spanwise length from turbine (m) 

r  
Length from center of wake (m)  z  Vertical length from the ground (m) 

tr  Radius of turbine (m) hz  Hub axis length from the ground (m) 
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t, jr  Radius of downstream wind turbine j (m) refz  Reference height for measuring refu (m) 

w,0r  Initial radius of wake (m) Greek symbols 

w,xr  Radius of wake at downstream length x (m)   Wind shear index 

u  
Velocity profile (3d) of the wind in the field (m s-1) wind  Direction of the free stream wind (°) 

u  Wind velocity (free stream) at hub (m s-1)   

 
INTRODUCTION 

 

Replacing fossil-based production of electricity with the 

generation of electricity through the use of renewable 

sources of energy has become one of the energy priorities 

of the governments, due to ozone depletion, climate 

change, acid rain, CO2 emissions and rising electricity 

prices [1, 2]. According to the statistics of the 

International Energy Association (IEA) [3], from 1990 to 

2015, the average every-five-year growth in the 

electricity generated by renewable (non-combustible) 

energy sources surpassed that of fossil-based electricity 

generation (18.5% vs. 16.6%, respectively). In 2018, 

renewable energy (non-combustible) constituted 14.3% 

of the total generation of electricity. Out of this, 2.9% was 

the share of wind energy, which puts into spotlight the 

importance of wind energy as one of the main sources of 

renewable energy, and emphasizes the role of wind 

turbines as the means of wind power harvesting.  

In wind turbines, electricity is generated from the 

transformation of wind energy. Extraction of the wind 

energy and the rotor drag induce cuts in the wind's speed 

and energy in a region downstream of the turbine, called 

the turbine wake [4]. As a result, the turbines 

implemented in the wake of the upstream turbines 

generate less power [5], and their mechanical structures 

might be exposed to a heightened level of fatigue [6]. 

Thus, in order to obtain the most power output from the 

wind farms, it is essential to predict the power generation 

of the implemented wind turbines by taking into account 

the generated wake of the upstream turbine(s). 

Methods for the prediction of the wind velocity 

distribution in the wake are classified into three 

categories, namely analytical, experimental and 

numerical modeling [7]. Experimental modeling suffers 

from  restrictions  in  the  analysis  of  some  of  the 

parameters such as velocity and pressure [8] and is not 

considered efficient enough in the optimizations of wind 

turbines arrangements in the wind farms [9]. The 

computational costs of the numerical models are rather 

high, but they provide relatively precise results for the 

wake velocity distribution [10]. Analytical modeling can 

result in adequate levels of precision by adopting simple 

equations at ~106-107 less CPU time per run compared to 

numerical models [7], such as LES [7], which makes 

employment of this kind of modeling suitable in 

commercial software [9]. 

Some of the studies examining wake by conducting 

analytical modeling as reported in literature [8, 11-13] (a 

brief description of these studies is discussed later in 

section literature review). It is of note that the most 

accurate analytical models for predicting the wake 

velocity are made upon the bell-shaped wind velocity 

distribution, and mainly rely on Gaussian distribution 

functions to provide an accurate wind velocity 

distribution of the wake (e.g., in research conducted by 

Ge et al. [14], Bastankhah and Porté-Agel [15], Xiaoxia 

et al. [16], Ishihara and Qian [17]). The Gaussian velocity 

distribution uses the Gaussian function as 
2f exp( 0.5(r c) )  to derive the velocity deficit inside the 

wake and analytically model the wake velocity profile 

(Figure 1) [13]. In this type of model, the value of the 

wake velocity profile at the downstream distance x is 

minimum at the wake center (which is aligned with the 

hub axis) and increases to its maximum value at the 

boundary of the wake by following the Gaussian function. 

Recently the subject of predicting the power 

generation of wind turbines has become the focus of the 

wind turbines research, where most of such studies have 

been carried out by employing functional analysis e.g. 

discrete wavelet transform discussed in literature [18]; 

signal decomposition techniques [19] or artificial 

intelligence [20] that were not primarily based on 

principles of mechanical engineering. Thus, objective of 

the present paper was to develop an analytical model for 

the prediction of the power generation of flat-terrain wind 

farms that contain horizontal-axis wind turbines 

(HAWTs) with the same hub height that are placed in 

each other’s wake. This was achieved by using a novel 
 

 

 
Figure 1. Wind velocity distribution in the wake [13] 
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3D Gaussian analytical model of HAWT wakes, which 

was presented in our previous work [13], and is utilized 

for calculating the effective wind velocity acting on the 

downstream HAWT, which was carried out by a novel 

method. The latter parameter is further used for reading 

the generated power of HAWT from the power curve, 

which is available from the manufacturer. Thus, the 

output of the analytical model would be the generated 

power of the wind farm. In the next step, the obtained 

power-predicting model was validated using the field 

measurements data of Horns Rev wind farm at two 

different angles of the incoming free-stream wind (270° 

and 222°) [21]. Finally, the results obtained from the 

presented model were compared to the results of other 

Gaussian-based power-predicting analytical models [22, 

23], the numerical data (derived from standard k-ε 

modeling [24] and LES modeling [25]) and the available 

output data of commercial software which was obtained 

from WAsP and WindSim simulations [21], and GH 

WindFarmer simulation [25]. 
 

 

LITERTAURE REVIEW 
 

Examples of studies used analytical models for 

investigating the wake were reported in literature [8, 11-

13]. Cheng et al. [8] used Obukhov length, Gaussian 

function and surface roughness length to calculate the 

wake expansion and velocity deficit, in order to derive the 

wind velocity profile in the wake. Tian et al. [11] 

proposed a model that calculates the width of the wake 

and the wake turbulence level at any distance downstream 

of turbines. Also, the anisotropic characteristics of the 

wake were included in the model by introducing the 

impacts of the ground and wind shear component into the 

proposed model. Li et al. [12] estimated the streamwise 

turbulence intensity of the wake through the self-similar 

characteristic of the added turbulence intensity and its 

linear expansion rate downstream of the turbine. 

Furthermore, to obtain more accurate results, a novel 

function was also proposed to include the effects of the 

ground on the wake. Ayoubi et al. [13] proposed a simple 

3D velocity model for the wind velocity distribution 

inside the wakes. The presented model was based on the 

Gaussian function and an isotropic value for the wake 

expansion rate. 

For the prediction of the generated power of the wind 

turbines implemented in wind farms, Wang et al. [22], 

Niayifar and Porté-Agel [23] presented analytical models 

that were based on the Gaussian velocity distribution of 

the wake. The power-predicting analytical model of 

Wang et al. [22] was primarily based on a Gaussian wake 

model that was previously presented by Bastankhah and 

Porté-Agel [15]. It is of note that this model of 

Bastankhah and Porté-Agel has been found to give less 

accurate results in predicting the wake velocity of wind 

turbines in comparison to other Gaussian models [13]. 

Also, one should point out that the model of Wang et al. 

[22] utilizes the overlapping ratio of the area between the 

downstream turbine(s) and the wake of the upstream 

turbine(s) for deriving the velocity deficit acting on the 

downstream wind turbine(s). For deriving the velocity 

deficit acting on the downstream turbine, in addition to 

taking into account the overlapping ratio of the area 

between the downstream turbine(s) and the wake of the 

upstream turbine(s), they also assumed a linear rate for 

the wake growth was represented by Jensen [26]. 

In the model presented by Niayifar and Porté-Agel 

[23], they assumed operating conditions, in which, the 

thrust coefficient of wind turbines (CT) was 

approximately constant. This assumption makes their 

model practical only within a limited range of the wind 

velocity, where a constant value for CT could be assumed. 

Moreover, in their prediction of the wind velocity acting 

on the downstream wind turbines (by taking into account 

the wakes generated by upstream wind turbines), Niayifar 

and Porté-Agel [23] used the linear superposition method, 

which was later found to be an inaccurate method through 

the results obtained by Tian et al. [21]. Also, in their 

presented model, the turbulence intensity of the incoming 

wind (I∞) should be within the range of 0.065 < I∞ <
0.15. Moreover, their model is only applicable, where the 

turbines spacing  (x) is within the range 5dt < x < 15dt. 

All of these impose restrictions on the applicability of 

their model. 

 

 
METHODOLOGY 

 
Velocity profile for a single wake 

To derive the analytical power-predicting model, the 3D 

wake velocity profile ( w,z,y,xu ) presented in the previous 

research, Equation (1), was used [13] (for the definitions 

of the symbols, we refer to the nomenclature). The first 

term on the right-hand side of Equation (1) is the 2D free 

stream wind velocity profile in the vertical direction, 

which was calculated by Equation (2) [27]. The second 

term on the right-hand side of Equation (1) is the 

Gaussian velocity deficit profile that was calculated by 

Equations (3) to (9). Equation (3) was derived by 

applying the boundary condition at hz z , where we have 

w,z,y,x ,zu 0.99u  [13]. Equations (4) to (7) were 

derived by considering the conservation of mass and 

momentum, and the Gaussian distribution velocity profile 

of the wake within the control volume as shown in Figure 

2 (Equations (4) and Equation (7) [16], and Equations (5) 

and (6) [13]). Equation (8) calculates the turbulence 

intensity of the wake at hz z  ( wakeI ) [13], and Equation 

(9) calculates the revised value of the wake decay 

coefficient ( w,revk ) [28]. For more details on the 

procedures of deriving these equations, we refer to our 

previous work [13].  
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Figure 2. The chosen control volume. The blue and purple 

lines represent the streamlines and the boundary of the 

control volume, respectively [13]. 
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Since the purpose of this paper was to present a model for 

the prediction of the power generation of wind turbines 

with equal hub heights, the distance from the ground 

would equal the turbines hub height ( hz z ). Thus, the 

simplified 2D form of Equation (1) can be used, which is 

defined as Equation (10): 

21 y
( )

2 c
w,r,xu u fe



  (10) 

 

Multiple-interacting wake velocity field 

For the calculation of the field wind velocity profile u  at 

turbines hub height for the cases of interacting wakes, any 

of the following four analytical methods could be utilized 

[29]: 

Geometric sum 

(GS): 

n w,i,r,x

i 1

uu

u u 

  (11)  

Linear 

superposition 

(LS): 

n w,i,r,x

i 1

uu
1 (1 )

u u 

    (12)  

Energy of 

balance (EOB): 

n2 2 2 2
w,i,r,x

i 1
u u (u u ) 


    (13)  

Root sum of 

squares (RSS): 

n w,i,r,x2 2

i 1

uu
(1 ) (1 )

u u 

    (14)  

where w,i,r,xu is the wake velocity profile of the upstream 

turbine i at its hub. Employment of any of these methods 

requires the calculation of the wake velocity profile for 

each effective upstream turbine ( w,i,r,xu ). According to 

Tian et al. [21], the best agreement with measured field 

data of multiple-implemented turbines was obtained for 

the RSS method. Thus, we utilized the RSS method 

[Equation (14)] for obtaining the field wind velocity 

profile u for the case of multiple-wake interaction. 

Prediction of wind farm power generation 

We have adopted an innovative analytical method for 

predicting the power produced by a wind turbine. This 

method is based on using the power curves of turbines, 

which are available from the turbine manufacturer. These 

power curves provide power as a function of the free 

stream wind velocity. In wind farms, a turbine placed on 

the second row or beyond might be affected by the 

wake(s) of the upstream wind turbine(s) (Figure 3). For 

such a wind turbine (downwind wind turbine j ), instead 

of utilizing the free stream wind velocity at hub height  

( u ) or the field wind velocity profile ( u ) at the wind 

turbine position for obtaining its generated power from 

the power curve, we proposed utilizing the effective wind 

velocity acting on the downstream wind turbine j  ( effu ) 

obtained by the RSS method [Equation (15)]. Thus, effu

is defined as Equation (16): 

n w,i,r,x 2

i 1

u
u u (1 (1 ) )

u

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In other words, effu is the average of the wind velocities 

acting on the downstream turbine j at hz z . In the 

present work, this parameter was used as the wind 

velocity in extracting the power output from the power 

curves of the turbines. Moreover, a MATLAB code was 

developed for computing the generated power of the 

turbines of a wind farm. The code's inputs are the 

positions of the wind turbines, their characteristics and 

power curves, and the properties of the field. Then, the 

code performs the calculations for (i) the wake velocity 

profile of upstream turbine(s) at the position(s) of the 

downstream turbine(s) (Equation (10)), (ii) the field wind 

velocity profile at the position of each turbine by taking 

into account the interacting wakes (Equation (15)), (iii) 

the effective wind velocity acting on each turbine 

(Equation (16)), and (iv) the generated power of each 

turbine by using its power curve. Thus, the output of the 

code is the generated power of each turbine. The process 

of the calculations is shown in Figure 4. 

 

ANALYSIS 
 

Characteristics of Horns Rev wind farm 

For validating the ability of the presented model in 

predicting the power generation of wind farms, the field 

measurements data of Horns Rev wind farm have been 

used [21]. The location of the Horns Rev wind farm is the 

North Sea 14 km off the west coast of Denmark. This 

 

 

 

 
Figure 3. The area within which ueff is defined, a) the top 

view and b) the front view of implemented turbines 
 

 
Figure 4. The process of the calculations used by the 

developed code 

 
 
wind farm is made up of 80 wind turbines manufactured 

by Vestas (V80-2 MW) arranged in a matrix shape of 8 

columns (south to north) by 10 rows (east to west) (Figure 

5). In this wind farm, the inter-turbine distance in both the 

columns and the rows is t7d [21]. The Vestas-V80 wind 

turbine implemented in the Horns Rev wind farm is a 2 

MW, pitch-controlled, variable-speed wind turbine with a 

rotor diameter of 80 m and a hub height of 70 m. In Figure 

6, the manufacturer's curves for the power and the thrust  

 

 

 
(a) 

 
(b) 

Figure 5. Turbines layouts in Horns Rev and those 

considered for (a) Case 1, θwind = 222° and (b) case 2, 

θwind = 270° [21] 

Input data: the positions of 
the wind turbines, their 

characteristics and power 
curves, and the properties 

of the field

Calcualtion of the wake 
velocity profile of 

upstream turbine(s) i at 
the position of 

downstream turbine(s) j 
(Equation (10))

Calculation of the field 
wind velocity profile at 

the position of each 
turbine by considering the 

interacting wakes 
(Equation (15))

Calculation of the 
effective wind velocity 
acting on each turbine 

(Equation (16))

Calculation of the 
generated power of each 

turbine by using the power 
curve of turbines

Output data: the generated 
power of each turbine
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Figure 6. Thrust coefficient and power curves of the 

considered turbine (Vestas V80-2 MW) [21] 

 

 

coefficient as functions of the wind speed are presented. 

A low level of turbulence (<8%) and many operating 

hours in a nearly neutral stability state are characteristics 

of this wind farm. The data set of Horns Rev used here is 

consisted of representative 10-min measured values from 

each wind turbine, and the wind speed utilized for our 

validation is derived from the power measurements and 

the V80 power curve [21]. Characteristics of the 

associated turbine and field are summarized in Table 1 

(for more details refer to literature [21]). 

 

Description of the results: Cases 1 and 2 

The prediction of the turbines’ power generation was 

carried out for two different angles of 222° (Case 1) and 

270° (Case 2) for the incoming free-stream wind (Figure 

5). The obtained results of the presented power-predicting 

analytical model were compared to the field 

measurements data [21], the available output data of 

commercial software, namely WAsP and WindSim [21], 

and GH WindFarmer [25] for Case 2 (Figure 7), the 

results of the power-predicting analytical models of 

Wang et al. [22], Niayifar and Porté-Agel [23] (Figure 8), 

and the numerical data of the LES study of Wu and Porté-

Agel [25] and the standard k-ε study of Naderi et al. [24] 

(Figure 9) for Cases 1 and 2. It should be noted that in the 

presented data (Figure 7 to Figure 9), the normalized 

power is the ratio of the average generated power of a 

turbine row to the average generated power of the first 

turbine row. Since the value of the normalized power of 

the first turbine row is equal to 1, we have omitted the 

 

 
Table 1. Characteristics of the turbine and field used for 

validation of power estimation of turbines of Cases 1 and 2 

Case 
𝛉𝐰𝐢𝐧𝐝 

(°) 

𝐮∞  
(𝐦𝐬−𝟏) 

𝐈∞ 
𝐝𝐭  

(m) 

𝐳𝐡  

(m) 
𝐤𝐰 𝐂𝐓 

Case 1 222 8.00 0.077 80 70 0.069 0.8 

Case 2 270 8.00 0.077 80 70 0.069 0.8 

data of the first turbine row from the plots for a better 

depiction of the normalized power of the downstream 

rows (Figure 7 toFigure 9). 

The output results of the commercial software 

(available for Case 2) are shown in Figure 7. As can be 

seen in Figure 7, the results of WAsP and WindSim show 

a steady flat trend for row number 4 and beyond, whereas 

the results of GH WindFarmer show a decreasing trend in 

the prediction of the generated power of the turbines. In 

both Cases 1 and 2, the results of the presented model 

show a slight change in the power generation as the row 

number increases (Figure 8 to Figure 9). In contrast, the 

results obtained from the analytical model of Wang et al. 

[22] show a steady decreasing trend as the row number 

increases (Figure 8). Conversely, in the analytical model 

of Niayifar and Porté-Agel [23], there is an increase in the 

predicted power generation once the row of the wind 

turbines increased from 2 to 3. However, there is a 

decreasing trend for the predicted power generation 

beyond row number 3 (Figure 8). In evaluating the data 

obtained from the numerical studies, the standard k-ε data 

show a steady decreasing trend in both Cases 1 and 2 

(Figure 9), whereas the LES modeling almost results in a 

flat, steady trend in power prediction, except for row 

number 2 in Case 2 (Figure 9b). 

 

Analysis of the results: Cases 1 and 2 

For comparing the effectiveness of our model, the two 

analytical models of the literature, the results of the 

numerical studies and the output data of the commercial 

software in predicting the field measured data of the 

power generation, we used the value of the mean absolute 

percentage error (MAPE), which is defined as follows: 

n t t

t 1 t

A F100
MAPE

n A


  (17) 

where At, Ft and n are the actual value (i.e., the field 

measurements data), the predicted values (i.e., the values 

 

 

 
Figure 7. The results obtained from the presented model and 

commercial software for the power generation of Horns Rev 

wind farm for Case 2, θwind = 270° 
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Figure 8. The results obtained from the presented model and other analytical models for the power generation of Horns Rev wind 

farm for  (a) Case 1, θwind = 222° and (b) case 2, θwind = 270° 

 

 

 
Figure 9. The results obtained from the presented model and numerical models for the power generation of Horns Rev wind farm 

for (a) Case 1, θwind = 222° and (b) case 2, θwind = 270° 

 
 
obtained by the modeling), and the number of the fitted 

points, respectively. 

The results of the MAPE analysis of the normalized 

power for Cases 1 and 2 are presented in Figure 10 to 

Figure 12. By condering the results of the commercial 

software, it should be added that among the avg. MAPE 

values obtained for the output data of the commercial 

software used for Case 2 (Figure 10), only that of WAsP 

exhibited a good level of accuracy (avg. MAPE = 4.24%) 

and the rest indicated very large deviations from the field 

measurements data. By comparing the extent of the 

accuracy of the analytical models considered in 

predicting the field measured data of the power 

generation, as can be seen in Figure 11, for Case 1 our 

model came second after Wang et al. [22] model [avg. 

MAPE = 3.61 and 2.61%, respectively] and for Case 2 its 

prediction (i.e., avg. MAPE = 1.89%) was superior to 

those of the other models (e.g., avg. MAPE = 3.24% for 

Wang et al. [22] model). It is of note that compared to the 

numerical models and the commercial software 

considered, our model gave the lowest value for avg. 

MAPE for both Case 1 (Figure 12a) and Case 2 (Figure 

12b and Figure 10). 

 

 

 
Figure 10. Values of  MAPE at diferent turbine rows and the 

average (avg.) MAPE of rows number 2 and beyond for the 

results obtained from the presented model and commercial 

software for the power generation of Horns Rev wind farm 

for Case 2, θwind = 270° 
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Figure 11. Values of  MAPE at diferent turbine rows and the average (avg.) MAPE of rows number 2 and beyond for the results 

obtained from the presented model and other analytical models for the power generation of Horns Rev wind farm (a) Case 1, 

θwind = 222° and (b) case 2, θwind = 270° 

 
 

 
Figure 12. Values of  MAPE at diferent turbine rows and the average (avg.) MAPE of rows number 2 and beyond for the results 

obtained from the presented model and numerical models for the power generation of Horns Rev wind farm for (a) Case 1, θwind =
222° and (b) case 2, θwind = 270° 

 

 
CONCLUSION 
 
This research presented an analytical model for 

predicting HAWT power generation that was based upon 

the Gaussian description of the 3D velocity profile of the 

wake. By adopting a novel method, the 3D velocity 

profile of the wake was utilized for calculating the 

effective wind velocity acting on the downstream HAWT 

for the case of multiple-interacting wakes in wind farms. 

The obtained value for the effective wind velocity was 

further used for reading the generated power of HAWT 

from the power curve, which is available from the 

manufacturer of the turbine. Moreover, a MATLAB code 

was developed based on the presented model for 

computing the generated power of the turbines of a wind 

farm, where the positions of the wind turbines, their 

characteristics and power curves, and the properties of 

the field were taken as the initial inputs.  

The ability of the presented power-predicting model 

in the prediction of wind farm power generation was 

validated through field measurements data of 64 wind 

turbines (each having a capacity of 2 MW) implemented 

in Horns Rev wind farm for two different angles of 222° 

(Case 1) and 270° (Case 2) of the incoming free-stream 

wind. Moreover, the results obtained from the presented 

model have been compared to the results from the two 

analytical models of the literature for Cases 1 and 2, the 

numerical data of two previous studies (LES data and 

standard k-ε data) for Cases 1 and 2, and output data of 

three commercial software (GH WindFarmer, WinSim 

and WAsP) of previous investigations for Case 2. 

Evaluation of the values of the mean absolute percentage 

error (MAPE) revealed that the presented model mostly 

showed a superior accuracy (avg. MAPE = 3.61 for Case 

1, and avg. MAPE = 1.89% for Case 2) in predicting the 

power generation compared to other analytical power-

predicting models, numerical studies and commercial 

software. 

Since the presented model is easy to implement and 

also renders rather high accuracy results, this model can 

be used in studies concerning the implementation of wind 

turbines such as predicting the power production of wind 

farms in the initial feasibility studies, implementation of 

new wind turbines among the previously implemented 

turbines of a wind farm, and also the layout optimization 

of wind turbines in wind farms. 
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Persian Abstract 

 چکیده

بینی توان تولیدی مزرعه را داشته باشند، امری مهم به های بادی قابلیت پیشهای توربینهای مزارع بادی که با در نظر گرفتن برهمکنش ویکتوسعه مدل

های بادی دارد. هدف مطالعه حاضر ارائه یک روش تحلیلی ابتکاری جهت بسزایی بر توان تولیدی توربینهای بادی تاثیر های توربینآید چرا که ویکحساب می

های بادی محور افقی با ارتفاع هاب یکسان هستند. روش به کار گرفته شده بر مبنای باشد که مجهز به توربینبینی توان تولیدی مزارع بادی مسطح میپیش

باشد که پیش از این ارائه شده بوده است. بر مبنای این مدل ویک، یک مدل تحلیلی به دست آمده است های بادی محور افقی مییک مدل گوسی ویک توربین

کند که در قدم بعد از آن برای استخراج توان تولیدی توربین)ها( از منحنی که سرعت باد موثر بر توربین)های( بادی محور افقی پایین دستی را محاسبه می

نجی سدی مزرعه بادی خواهد بود. اعتبارگیرد. به این ترتیب خروجی مدل تحلیلی توان تولیشود( مورد استفاده قرار میت )که توسط سازنده توربین فراهم میقدر

نشان داد که  است. تحلیل خطای نتایجگیری شده در مزرعه بادی هورنز ریو برای دو زاویه جریان باد ورودی انجام گرفته مدل ارائه شده با استفاده از داده اندازه

سازی و همچنین داده خروجی سه گیری مورد بحث بیش از دو مدل تحلیلی پیشین و نتایج دو مطالعه شبیهبینی داده اندازهدقت مدل ارائه شده در پیش

 باشد.افزار تجاری مینرم

 

 

 


