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This work presents a novel direct active and reactive powers command (DARPC) scheme based
on fuzzy super twisting algorithms (FSTAs) of an asynchronous generator (ASG) integrated into
dual-rotor wind power (DRWP) systems. The DRWP has two sets of blades. So it is more efficient
for collecting power from wind in comparison to a traditional wind turbine. The scientific works
indicate thata DRWP could extract additional 20-30% power compared to a traditional wind
turbine. The conventional DARPC control scheme using the conventional integral-proportional
(PI) regulators (DARPC-PI) has considerable reactive and active power oscillations. In orderto
guarantee an effective DARPC technique for the ASG-based DRWP system and minimize these
oscillations, FSTAs are used in this work. Both DARPC strategies are presented and simulated
from two tests using Matlab software. Simulation results showed the effectiveness of the
designed DARPC control technique especially on the quality of the provided active and reactive

power comparatively to the traditional DARPC control scheme with PI controllers.

doi: 10.5829 /ijee.2021.12.02.02

INTRODUCTION

DARPC or direct active and reactive powers command is
a technique to controlasynchronous generators (ASGs) by
utilizing stator active and reactive powers. But the
reactive and active power oscillations are occurred in the
traditional DARPC strategy [1]. The principle of the
DARPC strategy is detailed in literature [2-4]. In
addition, DPC offers many advantages include: simplicity
in calculations, robustness against ASG parameters, and
fast dynamic response [5-7]. Although the DARPC
strategy is getting more and more popular, it suffers from
some drawbacks such as the large ripples of reactive and
active powers. In order the overcome these disadvantages
many researchers have been investigating on the DARPC
strategy and they can be grouped underseveral headlines:
e Using artificial intelligence methods (Neural
networks and fuzzy logic) on different sections of the
system;
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e Using different inverter topologies;
e Using sliding mode controller (SMC).

In this work, a novel fuzzy super-twisting algorithm
(FSTA) and modified space vectormodulation (MSVM)
strategy has been designed to improve the stator active
and reactive powers of the ASG on the DARPC
technique.

The aim of this work is to improve the performance
of the DARPC using FSTA controllers for ASG-based
dual-rotor wind turbine (DRWT) system under variable
speed wind and also to reduce fluctuations in reactive
power, current, torque, and active power.

The FSTA method in the proposed technique rates
active and reactive power errors and described the
optimum space vectorto reduce stator reactive and active
power errors and oscillations. The simulation studies have
been performed wusing Matlab logiciel board to
effectiveness testing of the designed control strategy. In
part Il of this paper, the basic principles of the DARPC
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technique with Pl controllers are presented. In part IlI,
detailed information about the proposed strategy is
introduced. Part IV gives the simulation results of the
proposed technique. In conclusion, we provided a
summary of the work performed.

MATHEMATICAL MODELING OF DRWP SYSTEM

The DRWP systemwith ASG is shown in Figure 1. The
DRWP consists of two wind powers. The mechanical
power captured from the DRWP system is given by
Benbouhenni [8]:

)

where, Pat is the mechanical power of auxiliary turbine,
and Pmt is the mechanical power of auxiliary turbine.
The torque of DRWP is given by:

PDRWP =Par + Pwmr

O]

where, TaT is the torque of auxiliary turbine, and Pwr is
the torque of auxiliary turbine.

Equations (3) and (4) represent the torque of the
output main and auxiliary turbines [9].

Torwe =T ar +Twr
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where AaT, AmT: the tip speed ration of the main and
auxiliary turbines, Rm, RaT: blade radius of the auxiliary
and main turbines, p: the air density and wat, wwmr the
mechanical speed of the auxiliary and main turbines.

The tip speed ratios of the auxilliary and main
turbines are given below:

Qat-Rat
A = S2a0-Rar 5
AT Vo ()
Ay = Qwmt-Rmt (6)
V mr

where Qmris the rotational speed of the main rotor, and
Qatis the rotational speed of the auxiliary rotor.

The power coefficient Cp equation is approximated
using a non-linear function according to.
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where,  is pitch angle.
The wind speed on the main turbine is given below
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Figure 1. Structure of DRWP system with a ASG

with Vi is the velocity of the disturbed wind between
rotors at point x and Ct the trust coefficient, which is
taken to be 0.9; x the non-dimensional distance from the
auxiliary rotor disk. So, with respectto x=15, the value of
the Vx close to the main rotor is computable (rotors are
located 15 meters apart from each other).

MODIFIED SVM TECHNIQUE

The proposed SVM technique named as modified SVM
(MSVM) technique is an effective modulation technique
for uncertain inverter and it overcomes the main
disadvantages of the traditional SVM strategy.

Figure 2 shows a block diagram representation of the
MSVM technique approach for a two-level inverter in
wind power. The principle of MSVM is detailed by
Benbouhenniet al. [11]. This proposed strategy is based
on calculation of the minimum and maximum of three-
phase voltages. In this strategy, the sector and angle are
not necessary to calculate. Modified SVM technique is
used to minimize harmonic distortion (THD) in three-
phase output current waveform compared to PWM
technique.

The MSVM modulation technique is used to generate
gate pulses to the IGBT switches of the ASG-based
DRWP systems. The proposed MSVM technique is a
simple algorithm compared to the classical SVM method
and is more robust compared to the traditional PWM
strategy. Benbouhenni et al. [12] proposed the use of an
MSVM technique applied to the four-level inverter of
ASG. Thefuzzy MSVM technique is proposed to reduces
the active and reactive powers [13]. The simulation
results have shown the superiority of the two-level fuzzy
MSVM strategy. Mehedi et al. [14], have proposed an
MSVM to control the five-phase inverter and the results
indicate that the proposed MSVM  strategy-based
techniqgue is good at minimizing the torque
undulation, THD value of stator current, and stator flux
undulation.
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Figure 2. Modified SVM technique

DARPC STRATEGY WITH PI CONTROLLERS

In the DARPC-PI technique, the control of an ASG
involves the direct command of the active and reactive
powers by using two PI regulators [15]. This technique is
a robust, easy, and simple technique. Stator active and
reactive powers are estimated using Equations (9) and
(10) [16].

3 Lm
s _E o.Ls.Lr ’ (VS.I//rﬁ) (9)
3, Vs Vs.Lm
Q 7_E(E.Wrﬁ _E'Wra) (10)
while,
2
o=1-M (11)
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These estimated values are compared to reference
values and the resultant errors are applied to the PI
regulators. Two Pl controllers, as reactive and active PI
regulators, generate other command parameters on the
DARPC-MSWM technique or (DARPC-PI). The basic
schematic representation of the DARPC-PI technique for
ASG is shown in Figure 3.

The rotor flux can be estimated by:

4 (Vra - Rriroz)dt

(12)
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The rotor flux amplitude is given by:

2 2
Ve=\Vrat¥rp (13)
where:
l/7r = & (14)

Wr

The reactive and active PI regulators gains (Ki and
Kp) were found after performing simulations in Matlab
logiciel. The gianes of PI regulator is stated in Table 1.

THE FSTA METHOD BASED DARPC METHOD

The DARPC scheme with Pl controllers (DARPC-PI)
offers some drawbacks associated with the large active
and reactive powers ripples. In order to reduce these
ripples, an STA technique with a fuzzy controller (FC)
was designed. The origin ofthe DARPC-FSTA method is
like to the DARPC-PI technique. The difference is using
an FSTA algorithm to replace the conventional PI
controllers. Also, the FLC is not dependent on the
accurate mathematical model of the system [17]. It is
based on ‘IF...THEN’ rules and experiences of human
beings. In this work, using the advantage of FLC and
STA, a DARPC method is presented.

A. Design of PI controller based on STA algorithm

The STA algorithm is based on the design of the
discontinuous command signal that drives the system
states toward special surfaces in state space [18]. Two

Table 1. PI regulator gaines
0.6

0.00005

Ki
Kp

OS AVfab

Active and reactive power estimation

Figure 3. DARPC-PI technique



H.Benbouhenni / Iranian (Iranica) Journal of Energy and Environment 12(2): 109-117, 2021

STA algorithms are selected for stator reactive and active
power command. On the other hand, the STA algorithm
is one of the robust techniques [19]. It is a particular
operation mode of variable structure control systems.
Thesetechniques were used in numerous research works
in the pastyears [20-24]. In the ASG command using the
STA algorithm, the manifolds are chosen according to the
error between the measured signals and the reference
input signal. Considering that e; and ez are the errors of
the stator active and the reactive power, we have the
following:

Psref — P
{el} _ sref S (15)
= Qsref ~ Qs
The expression of the manifolds has the following
form.

[S(Ps)}z Psref ~Ps 16)
S(QS) QSref - Qs
The STA algorithms active and reactive power

controllers are designed to respectively change the g and
d-axis voltages as in Equations (17) and (18) [11].

r .
vdr=KllsQr Sign(Sq,) +Vgn )
Van =Kz Sign(SQr)
r .
Var=Ki[Stey| SION(Step) +Vgu1
y (18)
I K,sign(sy, )
gt K2SIon(Sy,

where, the constant gains k1 and k2 must check the
stability conditions.

Figure 4 shows the block diagram of STA algorithms
of active and reactive powers.

B. Designe of FLC based on STA algorithm

FSTA algorithm is a merge between the STA algorithm
and FLC technique, where the switching term, Sign(S(x)),
has been replaced by the FLC technique. The proposal of
an STA algorithm incorporating the FLC method helps in
achieving minimized active and reactive powers
oscillations, easy method, simple technique, and robust
technique compared to vector command method. The
proposed FSTA algorithm, which is proposed to
command the active and reactive powers of the ASG is
shown in Figure 5. The fuzzy sets have been defined as
follows: NB: Negative Big, NM: Negative Middle, NS:
Negative Small, PS: Positive Small, PB: Positive Big, EZ:
Equal Zero, and PM: Positive Middle. Membership
functions in triangular shape are shown in Figures 6 and
7, respectively. Table 2 shows the proposed rule bases for
the FSTA algorithms [25, 26].

112

Figure 5. Block diagram of FSTA technique
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Table 2. FSTA algorithm rule bases

NB NM NS EZz PS PM PB
Ae

NS NB NB NM NS EZ PS PM
NM NB NB NB NM NS EZ PS
NB NB NB NB NB NM NS EZ
PS NM NS EZ PS PM PB PB
Ez NB NM NS EZ PS PM PB
PB EZ PS PM PB PB PB PB
PM NS EZ PS PM PB PB PB

The proprieties of our regulators are given in the
Table 3.

The structure of the DARPC technique with the
FSTA algorithms applied to the ASG-DRWP is
illustrated in Figure 8.

SIMULATION RESULTS

To study the effectiveness of the designed DARPC
DARPC-PI and DARPC-FSTA technique,the simulation
of the systemwas accomplished using Matlab logiciel and

Table 3. Proprieties of the FLC technique

Fis type Mamdani
And method Min
Or method Max
Implication Min
Aggregation Max
Defuzzification Centroid

Grid

DRWP

i

Wind

Active and reactive power estimation

Figure 8. Block diagram of DARPC-FSTA control

fuzzy logic Toolbox The DFIG used in this case study is
a 1,5MW, 380/690V, 50Hz, two poles, with the following
parameters: Rs= 0.012Q2, Lr=0.0136 H, M= 0.0135 H,
Rr= 0.021Q, Ls=0.0137 H [27].

The ASG has the following mechanical parameters:
J =1000 Kg.m2, fr=0.0024 Nm/s.

From the simulation results are presented in Figures
9 and 10. It is apparent thatthe THD value of current for
the DARPC-FSTA strategy is reduced (see Table 4).

From the systemresponses given in Figures 11 and
12 for DARPC-PI and DARPC-FSTA technique the
stator active and reactive power tracks the reference
powers without overshoot, with zero steady-state error.
Figure 13 shows the torque of both techniques. Note that
torque is related to active power.

From Figure 14 can be seen that the amplitudes of the
stator phase currents depend on the state of the drive
systemand the value of the load active power.

The zoom in the active power, torque, and stator
current are shown in Figures 15, 16 and 17, respectively.
It can be seen that the DARPC control with FSTA
algorithms minimized the undulations in active power,
torque, and current compared to the DARPC strategy
with PI controllers.

FFT analysis

Fundamental (50Hz) = 1924 , THD= 3.31%
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Figure 9. THD value of the current (DARPC-PI)

~FFT analysis
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Figure 10. THD value of the current (DARPC-FSTA)

Table 4. THD value of both techniques

DARPC-PI 3.31%

DARPC-FSTA 3.07%
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Robustness test (RT)

In this test, the nominal value of the Rr and Rs is multiplied
by 2, the values of inductances Ls, M, and L are
multiplied by 0.5. Simulation results are presented in
Figures 18-23. As it’s shown by these figures, these
variations present an apparent effect on the torque,
current, active and reactive power curves, and that the
effect appears more significant for the DARPC using Pl
controllers compared to DARPC using FSTA algorithms
(See Figures. 24-26).

The THD value of the current in the DARPC using
the FSTA algorithms has been minimized significantly
(See Figures 22 and 23). Table 5 shows the THD value of
both strategies. Thus it can be concluded that the
proposed DARPC using FSTA algorithms is more robust
than the DARPC using the PI controllers.
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On the other hand, this designed technique reduced
the THD value of current compared to other techniques
(see Table5). Based on the results above, it can be said that
the DARPC-FSTA control technique has proven its
efficiency in reducing ripples and chattering phenomenain
addition to keeping the same advantages of the traditional
DARPC method.

Table 5. Compare results with other methods

Ref. Method Name THD (%)
[22] Selgc_)nd Order Continuous Sliding Mode — 0.98
irect Torque Control SOCSM-DTC

Direct Power Control DPC 4.88
[7] Virtual-Flux Direct Power Control VFDPC  4.19
[28] Sliding Mode Control SMC 3.05
[29] Field Oriented Control FOC 3.7
Proposed DARPC-PI 0.29
techniques DARPC-FSTA 0.15
CONCLUSION

In this work, a robuststrategy is designed to improve the
effectiveness of the DARPC-PI for the ASG-based
DRWP systems. FSTA technique is proposed to replace
the classical Pl controllers of the DARPC-PI control
scheme. The proposed strategy preserves the advantages
of the traditional DARPC such as less parameter
dependence and simplicity. The effectiveness of DARPC-
Pl and designed strategy is studied under, THD value of
current and powers oscillations. By comparing the
performances of the designed strategy with conventional
DARPC-PI, it can conclude that the designed strategy has
minimized the THD value of current. The proposed
strategy has been very successfulin improving the energy
quality provided by the wind generator.
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