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A B S T R A C T  

 

Electricity demand forecasting is an important task in power grids. Most of researches on electrical load 
forecasting have been done in the time domain. But, the electrical time series has a non-stationary inherence 
that makes hard load prediction. Moreover, valuable information is hidden in the electrical load sequence 
which is not open in the time domain. To deal with these difficulties, a new electricity demand forecasting 
framework is proposed in this work. In the proposed framework, at first, a new feature space of electrical load 
sequence is composed. The provided domain involves complementary information about shape and variations 
of electrical load sequence. Then, the obtained load features are integrated with the original load values in 
time domain to allow a rich input for predictor. Finally, a powerful deep learning technique from the family of 
recurrent neural networks, named long-short term memory, is used to learn electricity demand from the 
provided features in single and hybrid domains. The following domains are investigated in this work: 
frequency, cepstrum, spectral centroid, spectral roll-off, spectral flux, energy, time difference, frequency 
difference, Gabor and collaborative representation. The experiments show that the use of time difference 
domain decreases the mean absolute percent error from 0.0332 to 0.0056.  

doi: 10.5829/ijee.2020.11.01.06 
 

 
INTRODUCTION1 

 

An accurate electrical load prediction is necessary to build an 

intelligent energy management system, adjust and monitor 

energy demand and supply. It plays an important and crucial 

role in the present and future energy market [1, 2]. All of 

forecasting types, grouped based on time intervals, such as 

short-term, medium-term and long-term are serious subjects 

for planning and operation of electricity industry [3–6]. Short-

term load forecasting (STLF), which is focused in this work, 

refers to load prediction from several minutes or several hours 

to several days or a week.  Energy providers and utilities need 

STLF to specify the accurate required amount of electrical 

energy to purchase. In this way, they can buy electricity with 

lower prices. Advanced metering infrastructure assemble 

much more information by providing smart meter data than 

the data provided by traditional meters. This information 

allows a potential for an accurate STLF. 

Analysis of the load data can be done through several main 

approaches: deterministic, statistics and artificial intelligence. 

Almost in all methods, the load sequence is considered as a 

signal or time series. The deterministic approaches model the 

relation between consumed (or demand) load with other 

related factors like weather conditions such as temperature. 

They do forecasting using curve fitting, smoothing methods 
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and data extrapolation [7–9]. The statistical approaches 

consider the load time series as a stochastic process. They 

modelled the load curve of customers in different conditions 

by using probabilistic approaches such as Bayesian 

framework [10], regression methods such as autoregressive 

integrated moving average (ARIMA) [11, 12], support vector 

regression [13, 14] and Kalman filtering [15]. The artificial 

intelligence approaches are divided into two main groups: 

expert systems such as fuzzy based decision makers [16, 17] 

and artificial neural network (ANNs) [18–20]. The expert 

systems utilize a knowledge base provided by experts of 

electricity industry and inference engines constructed based 

on fuzzy logic. ANNs are known as powerful tools for load 

forecasting. They are inspired by biological structure of 

human brain that have several excellent characteristics. They 

can extract a non-linear model of observations without any 

assumption about the statistical distribution of data. So, 

ANNs have capability of dealing with complex patterns 

opposed to other traditional methods such as ARIMA. ANNs 

are self-adaptive and data-driven where an appropriate model 

of available samples is formed adaptively based on the 

observed data. 

The multilayer perceptron with a single hidden layer as a 

feed foreward neural network (FFNN) has been widely used 

for load forecasting [21]. But, the main disadvantage of FFNN 
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is that it only exploits the current samples of data without 

considering the previous input samples. In other words, it has 

not memory to remember anything happened in the past. But, 

in the sequential data such as load sequences, there are 

samples related to each other located in time order. To deal 

with these sequences, recurrent neural networks (RRNs) have 

been introduced where they consider the input samples 

previously received together with the current input ones [22]. 

An extended version of RNNs is long-short term memory 

(LSTM) network [23, 24]. LSTM has longer memory than 

RNN such that it is appropriate to learn from input samples 

and what experienced from past time with very long memory. 

The load data, as a temporal sequence or time series, 

contains worthful information about consumption behavior of 

customers in successive time intervals. This historical data in 

the time domain has been used for load forecasting in most of 

introduced STLF methods. But, smart meter data may contain 

useful features that are not evident in the time domain. Some 

informative features can be revealed in other feature spaces. 

To assess this subject, the performance of STLF in time 

domain is assessed and compared to other domains or feature 

spaces. LSTM is used for load forecasting in various domains 

in this work. The assessed domains are time, frequency, 

cepstrum, spectral centroid, spectral roll-off, spectral flux, 

energy, time difference, frequency difference, Gabor and 

collaborative representation (CR). In addition, the 

performance of LSTM network using hybrid domains is 

assessed and compared to single domains. 

 

 
LOAD SEQUENCE TRANSFORMATION 
 

The load forecasting is done by using a LSTM network that is 

one of the best deep learning approaches appropriate for 

sequences and time series. Most of researches use the load 

sequence in time domain as the input of a predictor. But, the 

load sequence in time domain may not reveal all useful 

information related to consumption behavior of customers 

and variations of electricity demand. In addition, the electrical 

load sequence has a non-stationary inherence which makes 

hard prediction. So, it is proposed that extract informative 

features from the load sequence in other domains in addition 

to time domain. To this end, different domains are introduced 

for production of informative features from the load sequence 

in this section. The main contributions of this work are 

represented as follows: 

1) New features such as collaborative representation are 

introduced for load data analysis. 

2) The performance of LSTM network is assessed in various 

domains and feature spaces for STLF.  

3) Single domains are compared to hybrid ones for STLF 

through LSTM.  

Domain 1: time. 𝑥(𝑛); 𝑛 = 0,1, … , 𝑁 is the load sequence in 

the time domain where 𝑛 is the time index and 𝑁 denotes the 

number of samples.  

Domain 2: frequency. The spectral features are extracted 

from the frequency domain where the coefficients of discrete 

Fourier transform are defined as follows: 

𝑋(𝑓) = ∑ 𝑥(𝑛)𝑒𝑥𝑝 (−𝑗
2𝜋

𝑁
𝑓𝑛) ; 𝑓 = 0,1, … , 𝑁 − 1𝑁−1

𝑛=0   (1) 

 

Domain 3: cepstrum. The cepstral coefficients are obtained 

from the inverse Fourier transform of logarithm of the 

absolute (magnitude) of its Fourier transform [25]: 

𝑇(𝑛) =
1

𝑁
∑

|log10 𝑋(𝑓)|𝑒𝑥𝑝 (𝑗
2𝜋

𝑁
𝑓𝑛) ;

𝑛 = 0,1, … , 𝑁 − 1

𝑁−1
𝑓=0   (2) 

Domain 4: spectral centroid. This domain is a measure of 

spectral shape of load sequence and concentration of load in 

the frequency domain: 

𝐶(𝑖) =
∑ (𝑚−𝑘)|𝑋(𝑖−𝑘)|𝑚−1

𝑘=0

∑ |𝑋(𝑖−𝑘)|+𝜀𝑚−1
𝑘=0

  (3) 

where 𝑋(𝑖) is 𝑖th element of its Fourier transform. 𝜀 is a very 

small positive constant such as 𝜀 = 10−6 to avoid becoming 

zero of denominator. 𝑚 is a positive integer where 𝑚 − 1 

previous samples of 𝑋(𝑖) are considered for calculating the 

centroroid value in each point of load sequence.  

Domain 5: spectral roll-off. This feature determines 𝑐% (for 

example 𝑐 = 80, 90 𝑜𝑟 95) of summation of absolute of 𝑚 

Fourier coefficients corresponding to 𝑚 previous samples of 

load sequence in the frequency domain [26]. Spectral roll-off 

reveals the skewness of the spectral shape. It distinguishes 

where the most of energy is concentrated in the frequency 

domain: 

𝑅(𝑖) =
𝑐

100
∑ |𝑋(𝑖 − 𝑘)|𝑚−1

𝑘=0   (4) 

Domain 6: spectral flux. It represents the local changes 

among successive samples in the frequency domain: 
𝐹(𝑖) = ∑ [𝑄(𝑖 − 𝑘) − 𝑄(𝑖 − 𝑘 − 1)]2𝑚−1

𝑘=0   (5) 

where 𝑄(𝑖) indicates the absolute value of Fourier coefficient 

normalized by its maximum value. 

Domain 7: energy. Energy of load sequence contained in 𝑚 −
1 previous samples of load sequence in time domain: 

𝐸(𝑖) =
1

𝑚
∑ |𝑥(𝑖 − 𝑘)|2𝑚−1

𝑘=0   (6) 

Domain 8: time difference. Difference of subsequent samples 

in time domain is obtained by: 
𝑑𝑖𝑓𝑓𝑡(𝑖) = 𝑥(𝑖) − 𝑥(𝑖 − 1)  (7) 

The differential operator helps to remove the non-stationary 

behavior of signal. The result is a load sequence with more 

stationary with respect to the expectation of load.  

Domain 9: frequency difference. The differential operator is 

applied to the load sequence in the frequency domain as 

follows: 
𝑑𝑖𝑓𝑓𝑓(𝑖) = 𝑋(𝑖) − 𝑋(𝑖 − 1)  (8) 

Domain 10: Gabor features. A Gabor function is a Gaussian 

function modulated by a sine wave: 
𝐺𝜎,𝑓0

(𝑖) = 𝑔𝜎(𝑖) 𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑖)  (9) 

where  

𝑔𝜎(𝑖) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑖2

2𝜎2
)  (10) 

where 𝜎 is the standard deviation of Gaussian function 

representing the scale of function and 𝑓0 indicates the spatial 

frequency in the complex exponential. The Gabor filter has 

complex values where the absolute of it is used for 

determining the contextual features of the load sequence: 

|𝐺𝜎,𝑓0
(𝑖)| = √𝑅𝜎,𝑓0

(𝑖) + 𝐼𝜎,𝑓0
(𝑖)  (11) 

where 
𝑅𝜎,𝑓0

(𝑖) = 𝑔𝜎(𝑖) 𝑐𝑜𝑠(2𝜋𝑓0𝑖)  (12) 

𝐼𝜎,𝑓0
(𝑖) = 𝑔𝜎(𝑖) 𝑠𝑖𝑛(2𝜋𝑓0𝑖)  (13) 

Filtering of the load sequence by using 1D Gabor filter results 

in characteristics of load in different frequencies and scales in 

both of spectral and spatial domains. 
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Domain 11: collaborative representation (CR). The features 

of CR domain provide neighboring information from the 

adjacent samples of each point of the load sequence. Let 𝑦 be 

the considered sample of load in 𝑖th instance, i.e., 𝑦 = 𝑥(𝑖). 

𝑚 previous samples of 𝑦 compose the 𝒙𝑠 vector as 𝒙𝑠 =
[𝑥(𝑖 − 1), 𝑥(𝑖 − 2), … , 𝑥(𝑖 − 𝑚)]𝑇. 𝑦 can be approximated 

by previous samples of load sequence through 𝑦 = 𝜶𝒙𝑠 where 

𝜶 is the coefficient vector of approximation obtained by: 
�̂� = arg min

𝜶
|𝑦 − 𝜶𝒙𝑠|2  (14) 

By considering that each sample closer to 𝑦 has higher 

similarity to it with a more probability, a larger weight should 

be assigned to closer samples. To cure this requirement, the 

objective function in Equation (14) is regularized as follows: 

�̂� = arg min
𝜶

|𝑦 − 𝜶𝒙𝑠|2 + 𝜆|𝜸𝑦𝜶|
2
  (15) 

where 
𝜸𝑦 = [|𝑦 − 𝑥(𝑖 − 1)|, |𝑦 − 𝑥(𝑖 − 2)|, … , |𝑦 −

𝑥(𝑖 − 𝑚)|]𝑇  
(16) 

and 𝜆 is the regularization parameter that controls the relation 

between two terms. Derivative of the objective function is 

taken and set to zero. The result will be: 

�̂� = (𝒙𝑠
𝑇𝒙𝑠 + 𝜆𝜸𝑦

𝑇𝜸𝑦)
−1

𝒙𝑠
𝑇𝑦 =

𝒙𝑠
𝑇𝑦

‖𝒙𝑠‖2+𝜆‖𝜸𝑦‖
2  (17) 

where ‖𝒙𝑠‖ is the norm of 𝒙𝑠 and  

‖𝜸𝑦‖
2

= ∑ |𝑦 − 𝑥(𝑖 − 𝑘)|2𝑚
𝑘=1   (18) 

But for samples to be forecasted, 𝑦 is unknown that has to be 

predicted. So, instead of 𝑦, estimate of it denoted by �̂� is used. 

But, what is an appropriate approximation for load sequence 

in 𝑖th instance, i.e., 𝑦 = 𝑥(𝑖)? The load value in each time 

instance is close to load value in one previous step, i.e., 𝑥(𝑖 −
1). In addition, the consumed load in each time instance can 

be close to the consumed load in the same instance of previous 

year denoted by 𝑥𝑝𝑦(𝑖). So, 𝑦 = 𝑥(𝑖) can be approximated by 

using both of 𝑦 = 𝑥(𝑖 − 1) and 𝑥𝑝𝑦(𝑖) as follows: 

�̂� = 𝜌𝑎(1 − 𝜌𝑏)𝑥(𝑖 − 1) + (1 − 𝜌𝑎)𝜌𝑏𝑥𝑝𝑦(𝑖)  (19) 

where 0 ≤ 𝜌𝑎 ≤ 1 is the correlation coefficient between 𝒙(𝑖) 

and 𝒙(𝑖 − 1) and 0 ≤ 𝜌𝑏 ≤ 1  is the correlation coefficient 

between 𝒙(𝑖) and 𝒙𝑝𝑦(𝑖). 𝒙(𝑖) is the lagged loads vector of 

𝑥(𝑖) containing the lagged values of load for 𝑖th instance. 

Corresponding to each point of load sequence, 20 lagged load 

values are considered that consist of 6 variables related to the 

dame day from last 3 hours, 7 variables related to the same 

hour of day before for last 3 hours and 7 variables related to 

the same hour of previous week for last 3 hours. 𝜌𝑎 and 𝜌𝑏 are 

calculated by: 

𝜌𝑎 =
|𝒙(𝑖)∙𝒙(𝑖−1)|

‖𝒙(𝑖)‖‖𝒙(𝑖−1)‖
  (20) 

𝜌𝑏 =
|𝒙(𝑖)∙𝒙𝑝𝑦(𝑖)|

‖𝒙(𝑖)‖‖𝒙𝑝𝑦(𝑖)‖
  

(21) 

where 𝒂 ∙ 𝒃 denotes the inner product between vectors 𝒂 and 

𝒃. If 𝒙(𝑖 − 1) has higher correlation with 𝒙(𝑖), 𝒙(𝑖 − 1) has 

larger weight in approximation of 𝑦 = 𝑥(𝑖) and if 𝒙𝑝𝑦(𝑖) has 

higher correlation with 𝒙(𝑖), 𝒙𝑝𝑦(𝑖) will have more 

contribution in approximation of 𝑦 = 𝑥(𝑖). An illustration of 

load sequence in different domains are shown in Figure 1.  

 
 

EXPERIMENTAL RESULTS 
 

The performance of LSTM network is assessed in different 

domains of smart meter data in this section. The used dataset, 

assessment measures and settings of structures and free 

parameters are introduced. Then, the experimental results are 

reported. 

 

Data, measures and settings 

To assess the performance of the proposed forecasting 

methods, a consumption load dataset from Ireland is used. 

This data acquired from Irish social science data archive 

(ISSDA). It is related to commission for energy regulation 

(CER) project [27]. The consumed electrical load of 5000  

 

 

    
Figure 1. An illustration of load sequence in different domains 



Iranian (Iranica) Journal of Energy and Environment 11(1): 33-39, 2020 
 

36 

 

customers (commercial and residential units) from July 2009 

to December of 2010 is involved. The residential load is just 

considered for experiments in this work. Three metrics are 

used for evaluation of forecasting results: mean absolute 

percent error (MAPE), mean absolute error (MAE) and mean 

square error (MSE). MAPE shows the forecasting accuracy, 

MAE indicates the average error caused by absolute 

difference between forecasted and actual values and MSE 

depicts the general deviation between forecasted and actual 

ones. The best prediction results are corresponding to smallest 

values of these metrics. Definition of these metrics are as 

follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑎(𝑖)−𝑦𝑓(𝑖)

𝑦𝑎(𝑖)
|𝑁

𝑖=1   (22) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑎(𝑖) − 𝑦𝑓(𝑖)|𝑁

𝑖=1   (23 

𝑀𝑆𝐸 =
1

𝑁
∑ |𝑦𝑎(𝑖) − 𝑦𝑓(𝑖)|

2𝑁
𝑖=1   (24) 

where 𝑦𝑓(𝑖) and 𝑦𝑎(𝑖)  indicate the forecasted and actual 

values, respectively and 𝑁 denotes the number of load values 

to be forecasted. The experiments are done on MATLAB 

R2018b. 70% of available data is used for training and the 

remained data is used for testing. The following structure is 

considered for LSTM network: 30 hidden units in the LSTM 

layer, sequence length and mini batch size are equal to 48×7, 

the learning rate is equal to 0.001, and maximum 100 epochs 

and the ‘adam’ optimizer are considered. Number of lags, i.e., 

𝑚, in cepstrum, spectral centroid, spectral roll-off, spectral 

flux and energy domains are experimented with different 

values of 𝑚 = {2,7,24,48,48 × 7} and the best forecasting 

results are obtained by 𝑚 = 48. In the CR domain, 𝑚 is 

selected as 𝑚 = 6 and 𝜆 is set as 𝜆 = 10−4. 

 
Results 

The performance of different introduced domains for STLF is 

assessed in this section. The main information is contained in 

the time domain where the original values of load are listed in 

order of incidence time. So, all domains are used together with 

the time domain. For example, frequency domain means time 

domain plus frequency domain; or Gabor domain refers to 

time domain plus Gabor domain. In addition to single 

domains, hybrid domains are also assessed. Two 

combinations of domains are compared. Hybrid1: 

combination of all domains and hybrid2: combination of 

domain 1 (time), domain 2 (frequency), domain 3 (cepstrum), 

domain 4 (spectral centroid), domain 8 (time difference) and 

domain 9 (frequency difference).  

The results of load forecasting in different domains are 

reported in Table 1. Efficient domains are ranked in terms of 

MAPE measure as follows: time difference (0.0056)-hybrid2 

(0.0125), spectral centroid (0.0240), frequency (0.0258), 

frequency difference (0.0264), cepstrum (0.0277), Gabor 

(0.0286), spectral roll-off (0.0315), time (0.0332), spectral 

flux (0.0350), energy (0.0642), hybrid1 (0.0794). The 

illustration of forecasted values obtained by different single 

domains together with the actual ones achieved for a 24h 

(containing 48 half hours) are shown in Figure 2. The hybrid 

results are depicted in Figure 3.  

The absolute and relative error curves are also shown in 

Figures 4-7 for single and hybrid domains. 

As seen from the obtained MAPE values, the best 

forecasting results are achieved by time difference domain. 

The load sequence is often a non-stationary time series which 

the statistical behavior of it is not stable during time. The time 

differencing can degrade the non-stationary nature of load 

sequence. The non-stable variations that may decrease the 

learning amount of forecasting network can be removed by 

differential operator. 

The use of the original load values beside the first order 

time differencing helps LSTM to learn better the variations of 

load time series. After time difference domain, the spectral 

 
 

    
Figure 2. Forecasted load curves obtained by different single domains for a day (48 half hours) 
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centroid domain ranks second among the single domains. 

Spectral centroid is a measure of spectral shape of load 

sequence in the spectral feature space. Higher value of 

centroid means that in the high frequencies, there are 

structures with more energy. This information together with 

the original values of load time series are effective for 

learning of non-linear behavior of the electrical load. Among 

different single domains, the worst result is related to the 

energy domain that is simply computed by square of load 

values in the time domain. 

In the hybrid1 domain, all 11 domains are combined 

together. As seen, the worst result is obtained by hybrid1 

domain. This result is due to high redundancy among various 

features of different domains. In addition, it is found that the 

use of some features together with other ones may be 

inconsistent and decreases the learning performance. In 

contrast, combination of time, frequency, cepstrum, spectral 

centroid, time difference and frequency difference in hybrid2 

domain provides superior results that ranks second after time 

difference domain. Comparison between hybrid1 and hybrid2 

domains concludes that an appropriate combination of 

domains (feature spaces) can improve the forecasting results 

while an inappropriate combination degrades the forecasting 

performance 

 

 

 
Figure 3. Forecasted load curves obtained by hybrid domains for a 

day (48 half hours) 

 

 

 
TABLE 1. Metric values for comparison of forecasting in different domains 

 
Domain 

1 

Domain 

2 

Domain 

3 

Domain 

4 

Domain 

5 

Domain 

6 

Domain 

7 

Domain 

8 

Domain 

9 

Domain 

10 

Domain 

11 
Several domains 

Metric Time Frequency Cepstrum 
Spectral 

centroid 

Spectral 

Roll-off 

Spectral 

flux 
Energy 

Time 

difference 

Frequency 

difference 
Gabor CR 

Hybrid1 

(all 

domains) 

Hybrid2 

(domains 

1,2,3,4,8,9) 

MAPE 0.0332 0.0258 0.0277 0.0240 0.0315 0.0350 0.0642 0.0056 0.0264 0.0286 0.0388 0.0794 0.0125 

MAE 45.17 38.33 43.26 34.81 48.97 53.36 89.04 9.53 40.04 43.42 56.41 107.87 18.70 

MSE 3539.78 4498.09 3741.27 2319.17 10064.47 12141.03 18584.89 329.61 5589.94 4323.66 5954.96 41577.07 3203.58 

 

 

  
Figure 4. Absolute errors obtained by different single domains for a day (48 half hours) 
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Figure 5. Relative errors obtained by different single domains for a day (48 half hours) 

 

 

 
Figure 6. Absolute errors obtained by hybrid domains for a day 

(48 half hours) 

 
 

 
Figure 7. Relative errors obtained by hybrid domains for a day 

(48 half hours) 

 

 
CONCLUSION 
 

Electricity demand forecasting in various domains of time, 

frequency, cepstrum, spectral centroid, spectral roll-off, 

spectral flux, energy, time difference, frequency difference, 

Gabor and collaborative representation is investigated in this 

paper. Generally, selection of a single or hybrid domain, i.e., 

an appropriate feature space of load sequence, can provide 

improvement in load forecasting. The time difference domain 

not only provides a rich source of information about electrical 

load variations but also decreases the non-stationary behavior 

of load sequence. So, integration of it with original time series 

significantly improves the electrical load forecasting. Other 

domains such as frequency, cepstrum, spectral centroid and 

frequency difference cannot be efficient lonely. But, an 

appropriate combination of them can improve the forecasting 

result. 
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 چکیده 

 یزمان  یدر حوزه زمان انجام شده است. اما، سر یکیبار الکتر ینیب شیمربوط به پ قاتیتحق شتریبرق است. ب  یهاکار مهم در شبکه کیبرق  یتقاضا ینیب شیپ

پنهان است که در حوزه زمان  یکیربار الکت ی، اطلاعات ارزشمند در توالنیشود. علاوه بر ایبار سخت م ینیب شیثابت است که باعث پریغ یالقا یدارا یکیالکتر

 یژگیو دیجد ی، ابتدا فضایشنهادیشده است. در چارچوب پ شنهادیکار پ نیبرق در ا یتقاضا ینیب شیپ دیمشکلات، چارچوب جد نیمقابله با ا یبرا. ستیباز ن 

بار بدست  یهایژگیاست. سپس، و یکیبار الکتر یتوال راتییدر مورد شکل و تغ یلیشده است. دامنه ارائه شده شامل اطلاعات تکم لیتشک یکیدنباله بار الکتر

از  قیعم یریادگیقدرتمند  کیتکن کیکننده فراهم شود. سرانجام، ینیب شیپ یبرا یمنبع غن کیشوند تا یم کپارچهی یدر دامنه زمان  یبار اصل ریآمده با مقاد

استفاده  یدیبریمنفرد و ه یهاارائه شده در حوزه یهایژگیبرق از و یتقاضا یریادگی ی، برااهمکرر، با نام حافظه بلند مدت کوت یعصب یهاخانواده شبکه

، اختلاف زمان، اختلاف ی، انرژیفی، شار طیفیط دنی، غلتیفیط دیقرار گرفته است: فرکانس، سرم، استروئ  یکار مورد بررس نیدر ا ریز یهاشود. دامنهیم

کاهش  0056/0به  0332/0درصد مطلق را از  یخطا نیانگیدامنه اختلاف زمان مدهد که استفاده از ینشان م شاتیمشترک. آزما ییفرکانس، گابور و بازنما

 دهد.یم
 

 


